14 research outputs found

    НикСлСвыС ΠΊΠ°Ρ‚Π°Π»ΠΈΠ·Π°Ρ‚ΠΎΡ€Ρ‹ для процСсса очистки Π°Π·ΠΎΡ‚ΠΎΠ²ΠΎΠ΄ΠΎΡ€ΠΎΠ΄Π½ΠΎΠΉ смСси ΠΎΡ‚ оксидов ΡƒΠ³Π»Π΅Ρ€ΠΎΠ΄Π°

    Get PDF
    Objectives. This study is devoted to developing new-generation nickel (Ni) catalysts for the purification of a nitrogen–hydrogen mixture from carbon oxides, which should encompass the best qualities of the NIAP-07-series solid catalysts. Methods. This study used derivatographic and radiographic methods; temperature-programmed recovery, decomposition, and joint temperature-programmed decomposition and recovery; and low-temperature nitrogen adsorption (specific surface determination). The mechanical strength of catalysts was determined using an MP-2C device by crushing granules with an applied load on the end face. The chemical composition and catalytic activity were determined by the methods of TU 2178-003-00209510 Technical Conditions. Results. Many studies regarding Ni–aluminum (Al)–calcium (Ca) methanation catalyst at all stages of its preparation have been conducted. It is demonstrated that Ni hydrocarboxyaluminate, a precursor of the active component of the catalyst, is formed when Ni hydroxocarbonate is mixed with active alumina in the presence of an aqueous solution of ammonia, and its chemical formula is established. Moreover, it was found that the mechanical strength of the catalyst is determined by the amount of industrial Ca aluminate added to the Ni–Al composition. The compositions of catalysts with different contents of the active component have been optimized. Conclusions. The developed catalyst has a low activation temperature and high catalytic activity, thermal stability, and mechanical strength and is resistant to organic and alkaline carbon dioxide absorbers. The catalyst can be produced in the form of a ring, cylindrical tablets, and extrudates of various geometric sizes. The methanation unit at Stavrolen (Budennovsk, Stavropol krai, Russia) has begun commercially operating the catalyst.Β Π¦Π΅Π»ΠΈ. НастоящСС исслСдованиС посвящСно Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠ΅ Π½ΠΈΠΊΠ΅Π»Π΅Π²ΠΎΠ³ΠΎ ΠΊΠ°Ρ‚Π°Π»ΠΈΠ·Π°Ρ‚ΠΎΡ€Π° Π½ΠΎΠ²ΠΎΠ³ΠΎ поколСния для очистки Π°Π·ΠΎΡ‚ΠΎΠ²ΠΎΠ΄ΠΎΡ€ΠΎΠ΄Π½ΠΎΠΉ смСси ΠΎΡ‚ оксидов ΡƒΠ³Π»Π΅Ρ€ΠΎΠ΄Π°, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ Π΄ΠΎΠ»ΠΆΠ΅Π½ Π°ΠΊΠΊΡƒΠΌΡƒΠ»ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ Π»ΡƒΡ‡ΡˆΠΈΠ΅ качСства ΠΊΠΎΠ½Ρ‚Π°ΠΊΡ‚ΠΎΠ² сСрии НИАП-07. ΠœΠ΅Ρ‚ΠΎΠ΄Ρ‹. Π˜ΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Π½Ρ‹ дСриватографичСский ΠΈ рСнтгСнографичСский ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹ Π°Π½Π°Π»ΠΈΠ·Π°; ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Π½ΠΎ-ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠΌΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ восстановлСния, разлоТСния ΠΈ совмСстного Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Π½ΠΎ-ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠΌΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ разлоТСния ΠΈ восстановлСния; низкотСмпСратурная адсорбция Π°Π·ΠΎΡ‚Π° (ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΡƒΠ΄Π΅Π»ΡŒΠ½ΠΎΠΉ повСрхности). ΠœΠ΅Ρ…Π°Π½ΠΈΡ‡Π΅ΡΠΊΠ°Ρ ΠΏΡ€ΠΎΡ‡Π½ΠΎΡΡ‚ΡŒ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΡΠ»Π°ΡΡŒ Π½Π° ΠΏΡ€ΠΈΠ±ΠΎΡ€Π΅ МП-2Π‘ Ρ€Π°Π·Π΄Π°Π²Π»ΠΈΠ²Π°Π½ΠΈΠ΅ΠΌ Π³Ρ€Π°Π½ΡƒΠ» с ΠΏΡ€ΠΈΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ΠΌ Π½Π°Π³Ρ€ΡƒΠ·ΠΊΠΈ Π½Π° Ρ‚ΠΎΡ€Π΅Ρ†. Π₯имичСский состав ΠΈ ΠΊΠ°Ρ‚Π°Π»ΠΈΡ‚ΠΈΡ‡Π΅ΡΠΊΡƒΡŽ Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ опрСдСляли ΠΏΠΎ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠ°ΠΌ Π’Π£ 2178-003-00209510. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹. Π’Ρ‹ΠΏΠΎΠ»Π½Π΅Π½Ρ‹ исслСдования Π½ΠΈΠΊΠ΅Π»ΡŒΠ°Π»ΡŽΠΌΠΎΠΊΠ°Π»ΡŒΡ†ΠΈΠ΅Π²ΠΎΠ³ΠΎ ΠΊΠ°Ρ‚Π°Π»ΠΈΠ·Π°Ρ‚ΠΎΡ€Π° мСтанирования Π½Π° всСх стадиях Π΅Π³ΠΎ приготовлСния. Показано, Ρ‡Ρ‚ΠΎ ΠΏΡ€ΠΈ смСшСнии гидроксокарбоната никСля с Π°ΠΊΡ‚ΠΈΠ²Π½Ρ‹ΠΌ оксидом алюминия Π² присутствии Π²ΠΎΠ΄Π½ΠΎΠ³ΠΎ раствора Π°ΠΌΠΌΠΈΠ°ΠΊΠ° происходит ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ Π³ΠΈΠ΄Ρ€ΠΎΡΠΎΠΊΠ°Ρ€Π±ΠΎΠ°Π»ΡŽΠΌΠΈΠ½Π°Ρ‚Π° никСля, ΡΠ²Π»ΡΡŽΡ‰Π΅Π³ΠΎΡΡ ΠΏΡ€Π΅Π΄ΡˆΠ΅ΡΡ‚Π²Π΅Π½Π½ΠΈΠΊΠΎΠΌ Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΠ³ΠΎ ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚Π° ΠΊΠ°Ρ‚Π°Π»ΠΈΠ·Π°Ρ‚ΠΎΡ€Π°, ΠΈ установлСна Π΅Π³ΠΎ химичСская Ρ„ΠΎΡ€ΠΌΡƒΠ»Π°. ΠžΠ±Π½Π°Ρ€ΡƒΠΆΠ΅Π½ΠΎ, Ρ‡Ρ‚ΠΎ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π° мСханичСской прочности ΠΊΠ°Ρ‚Π°Π»ΠΈΠ·Π°Ρ‚ΠΎΡ€Π° опрСдСляСтся количСством тСхничСского Π°Π»ΡŽΠΌΠΈΠ½Π°Ρ‚Π° ΠΊΠ°Π»ΡŒΡ†ΠΈΡ, добавляСмого Π² Ni–Al ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ†ΠΈΡŽ. ΠžΠΏΡ‚ΠΈΠΌΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Π½Ρ‹ составы ΠΊΠ°Ρ‚Π°Π»ΠΈΠ·Π°Ρ‚ΠΎΡ€Π°, ΠΈΠΌΠ΅ΡŽΡ‰Π΅Π³ΠΎ Ρ€Π°Π·Π»ΠΈΡ‡Π½ΠΎΠ΅ содСрТаниС Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΠ³ΠΎ ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚Π°. Π’Ρ‹Π²ΠΎΠ΄Ρ‹. Π Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½Π½Ρ‹ΠΉ ΠΊΠ°Ρ‚Π°Π»ΠΈΠ·Π°Ρ‚ΠΎΡ€ ΠΈΠΌΠ΅Π΅Ρ‚ ΠΏΠΎΠ½ΠΈΠΆΠ΅Π½Π½ΡƒΡŽ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Ρƒ Π°ΠΊΡ‚ΠΈΠ²Π°Ρ†ΠΈΠΈ, Π²Ρ‹ΡΠΎΠΊΡƒΡŽ ΠΊΠ°Ρ‚Π°Π»ΠΈΡ‚ΠΈΡ‡Π΅ΡΠΊΡƒΡŽ Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ ΠΈ Ρ‚Π΅Ρ€ΠΌΠΎΡΡ‚Π°Π±ΠΈΠ»ΡŒΠ½ΠΎΡΡ‚ΡŒ, Π±ΠΎΠ»ΡŒΡˆΡƒΡŽ ΠΌΠ΅Ρ…Π°Π½ΠΈΡ‡Π΅ΡΠΊΡƒΡŽ ΠΏΡ€ΠΎΡ‡Π½ΠΎΡΡ‚ΡŒ, ΡƒΡΡ‚ΠΎΠΉΡ‡ΠΈΠ²ΠΎΡΡ‚ΡŒ ΠΊ Π²ΠΎΠ·Π΄Π΅ΠΉΡΡ‚Π²ΠΈΡŽ органичСских ΠΈ Ρ‰Π΅Π»ΠΎΡ‡Π½Ρ‹Ρ… абсорбСнтов-ΠΏΠΎΠ³Π»ΠΎΡ‚ΠΈΡ‚Π΅Π»Π΅ΠΉ углСкислого Π³Π°Π·Π°. ΠšΠ°Ρ‚Π°Π»ΠΈΠ·Π°Ρ‚ΠΎΡ€ ΠΌΠΎΠΆΠ΅Ρ‚ ΠΈΠ·Π³ΠΎΡ‚Π°Π²Π»ΠΈΠ²Π°Ρ‚ΡŒΡΡ Π² Ρ„ΠΎΡ€ΠΌΠ΅ ΠΊΠΎΠ»ΡŒΡ†Π°, цилиндричСских Ρ‚Π°Π±Π»Π΅Ρ‚ΠΎΠΊ ΠΈ экструдатов с Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹ΠΌΠΈ гСомСтричСскими Ρ€Π°Π·ΠΌΠ΅Ρ€Π°ΠΌΠΈ. Начата ΠΏΡ€ΠΎΠΌΡ‹ΡˆΠ»Π΅Π½Π½Π°Ρ эксплуатация ΠΊΠ°Ρ‚Π°Π»ΠΈΠ·Π°Ρ‚ΠΎΡ€Π° Π² установкС мСтанирования ООО Β«Π‘Ρ‚Π°Π²Ρ€ΠΎΠ»Π΅Π½Β», Π³. БудСнновск, Π‘Ρ‚Π°Π²Ρ€ΠΎΠΏΠΎΠ»ΡŒΡΠΊΠΈΠΉ ΠΊΡ€Π°ΠΉ, Россия.

    Metapopulation Structure of Two Species of Pikeworm (Triaenophorus, Cestoda) Parasitizing the Postglacial Fish Community in an Oligotrophic Lake

    Get PDF
    In the present study, we estimated the levels of infestation of the main fish species that are hosts for two Triaenophorus species: T. crassus and T. nodulosus. The prevalence of T. crassus and T. nodulosus infestations in the intestine of their definitive host–pike Esox lucius was similar (71.0% and 77.4%, respectively). At the same time, the prevalence of T. crassus infestation in muscle tissue was significantly different between the second intermediate hosts, Coregonus lavaretus pidschian (31.4%) and Cor. l. pravdinellus (91.2%), due to considerable differences in their diets. For T. nodulosus, we found significant variations in the levels of prevalence among the second intermediate hostsβ€”100% for Lota lota, 81.8% for Cottus sibiricus 31.9% for Thymallus arcticus, and 24.5% for Perca fluviatilisβ€”that we also explained using different diets. Moreover, analysis of the symmetry of parasite infestations did not reveal any asymmetry between the number of cysts in the left and right body surfaces of the β€œplanktivorous” form/species of whitefish, whereas in the β€˜β€˜benthivorous”, an asymmetry of parasite infestations was found.The research of 2020 was partially supported by the Russian Foundation for Basic Research (grant number 19-34-60028), the data curation in 2021 was partially supported by the Russian Science Foundation (project No. 19-74-10054), and for 2022 was partially supported by the Russian international scientific collaboration program Mega-grant (mega-grant No. 075-15-2022-1134).info:eu-repo/semantics/publishedVersio

    Π£ΡΡ‚ΠΎΠΉΡ‡ΠΈΠ²ΠΎΡΡ‚ΡŒ Π½ΠΈΠΊΠ΅Π»Π΅Π²Ρ‹Ρ… ΠΏΡ€ΠΎΠΌΡ‹ΡˆΠ»Π΅Π½Π½Ρ‹Ρ… ΠΊΠ°Ρ‚Π°Π»ΠΈΠ·Π°Ρ‚ΠΎΡ€ΠΎΠ² мСтанирования ΠΊ Π²ΠΎΠ·Π΄Π΅ΠΉΡΡ‚Π²ΠΈΡŽ органичСских абсорбСнтов удалСния диоксида ΡƒΠ³Π»Π΅Ρ€ΠΎΠ΄Π° ΠΈΠ· синтСз-Π³Π°Π·Π°

    Get PDF
    We report the results of studies on the influences of the organic carbon dioxide absorbent – aqueous solution of activated methyldiethanolamine (MDEA) – on the physico-chemical and mechanical characteristics of nickel-alumina catalyst NIAP-07-01 (NKM-1) and cement-containing catalysts NIAP-07-07 (NKM-7), Meth-134 and Meth-135 for the hydrogenation of carbon oxide (methanation). It is established that for the nickel-alumina and nickel-cement-containing catalysts subjected to activated methyldiethanolamine (MDEA) it’s possible to restore their strength and catalytic properties. In order to increase the time of operation of the methanator it is recommended to apply a new Nickel cement-containing catalyst NIAP-07-07 (NKM-7), which can be produced as tablets, rings or extrudates.ΠŸΡ€ΠΈΠ²Π΅Π΄Π΅Π½Ρ‹ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ исслСдований воздСйствия органичСского абсорбСнта Π² Π²ΠΈΠ΄Π΅ Π²ΠΎΠ΄Π½ΠΎΠ³ΠΎ раствора Π°ΠΊΡ‚ΠΈΠ²ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ мСтилдиэтаноламина (ΠœΠ”Π­Π), ΡΠ²Π»ΡΡŽΡ‰Π΅Π³ΠΎΡΡ абсорбСнтом диоксида ΡƒΠ³Π»Π΅Ρ€ΠΎΠ΄Π° ΠΏΡ€ΠΈ Π΅Π³ΠΎ ΡƒΠ΄Π°Π»Π΅Π½ΠΈΠΈ ΠΈΠ· Π°Π·ΠΎΡ‚ΠΎ-Π²ΠΎΠ΄ΠΎΡ€ΠΎΠ΄Π½ΠΎΠΉ смСси, Π½Π° Ρ„ΠΈΠ·ΠΈΠΊΠΎ-химичСскиС ΠΈ Ρ„ΠΈΠ·ΠΈΠΊΠΎ-мСханичСскиС характСристики никСльалюминиСвого ΠΌΠ°Ρ€ΠΊΠΈ НИАП-07-01 (НКМ-1) ΠΈ цСмСнтсодСрТащих ΠΌΠ°Ρ€ΠΊΠΈ НИАП-07-07 (НКМ-7), Meth-134 ΠΈ Meth-135 ΠΊΠ°Ρ‚Π°Π»ΠΈΠ·Π°Ρ‚ΠΎΡ€ΠΎΠ² гидрирования оксидов ΡƒΠ³Π»Π΅Ρ€ΠΎΠ΄Π° (мСтанирования). УстановлСно, Ρ‡Ρ‚ΠΎ Π½ΠΈΠΊΠ΅Π»ΡŒΠ°Π»ΡŽΠΌΠΈΠ½ΠΈΠ΅Π²Ρ‹Π΅ ΠΈ Π½ΠΈΠΊΠ΅Π»ΡŒΡ†Π΅ΠΌΠ΅Π½Ρ‚ΡΠΎΠ΄Π΅Ρ€ΠΆΠ°Ρ‰ΠΈΠ΅ ΠΊΠ°Ρ‚Π°Π»ΠΈΠ·Π°Ρ‚ΠΎΡ€Ρ‹, ΠΏΠΎΠ΄Π²Π΅Ρ€Π³Π½ΡƒΡ‚Ρ‹Π΅ Π²ΠΎΠ·Π΄Π΅ΠΉΡΡ‚Π²ΠΈΡŽ Π°ΠΊΡ‚ΠΈΠ²ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ мСтилдиэтаноламина (ΠœΠ”Π­Π), Π²ΠΎΡΡΡ‚Π°Π½Π°Π²Π»ΠΈΠ²Π°ΡŽΡ‚ свои прочностныС ΠΈ каталитичСскиС свойства. Для увСличСния Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ эксплуатации ΠΌΠ΅Ρ‚Π°Π½Π°Ρ‚ΠΎΡ€Π° рСкомСндуСтся ΠΏΡ€ΠΈΠΌΠ΅Π½ΡΡ‚ΡŒ Π½ΠΎΠ²Ρ‹ΠΉ Π½ΠΈΠΊΠ΅Π»Π΅Π²Ρ‹ΠΉ цСмСнтсодСрТащий ΠΊΠ°Ρ‚Π°Π»ΠΈΠ·Π°Ρ‚ΠΎΡ€ ΠΌΠ°Ρ€ΠΊΠΈ НИАП-07-07 (НКМ-7), ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ ΠΌΠΎΠΆΠ΅Ρ‚ ΠΈΠ·Π³ΠΎΡ‚Π°Π²Π»ΠΈΠ²Π°Ρ‚ΡŒΡΡ Π² Π²ΠΈΠ΄Π΅ Ρ‚Π°Π±Π»Π΅Ρ‚ΠΎΠΊ, ΠΊΠΎΠ»Π΅Ρ† ΠΈΠ»ΠΈ экструдатов

    Nickel catalysts for nitrogen–hydrogen mixture purification from carbon oxides

    Get PDF
    Objectives. This study is devoted to developing new-generation nickel (Ni) catalysts for the purification of a nitrogen–hydrogen mixture from carbon oxides, which should encompass the best qualities of the NIAP-07-series solid catalysts. Methods. This study used derivatographic and radiographic methods; temperature-programmed recovery, decomposition, and joint temperature-programmed decomposition and recovery; and low-temperature nitrogen adsorption (specific surface determination). The mechanical strength of catalysts was determined using an MP-2C device by crushing granules with an applied load on the end face. The chemical composition and catalytic activity were determined by the methods of TU 2178-003-00209510 Technical Conditions. Results. Many studies regarding Ni–aluminum (Al)–calcium (Ca) methanation catalyst at all stages of its preparation have been conducted. It is demonstrated that Ni hydrocarboxyaluminate, a precursor of the active component of the catalyst, is formed when Ni hydroxocarbonate is mixed with active alumina in the presence of an aqueous solution of ammonia, and its chemical formula is established. Moreover, it was found that the mechanical strength of the catalyst is determined by the amount of industrial Ca aluminate added to the Ni–Al composition. The compositions of catalysts with different contents of the active component have been optimized. Conclusions. The developed catalyst has a low activation temperature and high catalytic activity, thermal stability, and mechanical strength and is resistant to organic and alkaline carbon dioxide absorbers. The catalyst can be produced in the form of a ring, cylindrical tablets, and extrudates of various geometric sizes. The methanation unit at Stavrolen (Budennovsk, Stavropol krai, Russia) has begun commercially operating the catalyst

    Phylogenetic position of whitefish Coregonus lavaretus (L.) from Teletskoye Lake (Siberia) based on complete mitochondrial DNA

    No full text
    The taxonomy of the European whitefish species complex Coregonus lavaretus (L.) is extremely intricate. Owing to wide distribution from Central Europe to water bodies in Chukotka and high biological plasticity, many forms with different taxonomic status have been described. Teletskoye Lake is inhabited by two endemic whitefishes: Pravdin's whitefish Coregonus lavaretus pravdinellus and Teletskoye whitefish C. smitti. Previously, a total of 106 mitogenomes of whitefishes from the C. lavaretus complex from different populations of the Baltic and North seas were sequenced; however, there are no such data for whitefishes from Siberia. We obtain the mitochondrial genomes of C. smitti and C. l. pravdinellus, 16 738 bp in length, with high coverage. The mitogenomes differ in 46 positions (0.27%). Comparative analysis of C. lavaretus mitogenomes from water bodies of Europe and Teletskoye Lake confirms the common origin of the populations from the eastern part of the Baltic Sea and water bodies of Siberia. In addition, analysis of the complete mitogenomes of C. smitti and C. l. pravdinellus does not confirm their different taxonomic status, at least on the basis of mtDNA

    НовыС Π΄Π°Π½Π½Ρ‹Π΅ ΠΎ распространСнии Π΄ΠΎΠΌΠΎΠ²ΠΎΠ³ΠΎ сыча Π² Новосибирской области ΠΈ сСвСрной части Алтайского края, Россия

    Get PDF
    Π’ сообщСнии приводятся Π½ΠΎΠ²Ρ‹Π΅ Π΄Π°Π½Π½Ρ‹Π΅ ΠΎ встрСчах Π΄ΠΎΠΌΠΎΠ²ΠΎΠ³ΠΎ сыча (Athene noctua) Π² Π˜ΡΠΊΠΈΡ‚ΠΈΠΌΡΠΊΠΎΠΌ Ρ€Π°ΠΉΠΎΠ½Π΅ Новосибирской области ΠΈ ΠšΡ€ΡƒΡ‚ΠΈΡ…ΠΈΠ½ΡΠΊΠΎΠΌ Ρ€Π°ΠΉΠΎΠ½Π΅ Алтайского края. УточняСтся информация ΠΎ Π½Π°Ρ…ΠΎΠ΄ΠΊΠ°Ρ… Π΄ΠΎΠΌΠΎΠ²ΠΎΠ³ΠΎ сыча Π² ΠšΠ°Ρ€Π°ΡΡƒΠΊΡΠΊΠΎΠΌ Ρ€Π°ΠΉΠΎΠ½Π΅ Новосибирской области

    Phylogeny, Distribution, and Biology of Pygmy Whitefish (<i>Prosopium coulterii</i>) in the Beringia Region (Chukotka)

    No full text
    The pygmy whitefish Prosopium coulterii (C. H. Eigenmann & R. S. Eigenmann, 1892) is a freshwater fish with a highly disjunct distribution ranging from the middle part of North America to Chukotka. There is still no consensus regarding its phylogeny and dispersal history due to limited information from the Chukotkan part of the range. We investigated 22 lakes over Chukotka and found a much broader distribution than it was previously thought. Pygmy whitefish was found to be a common species in the lakes that belong to rivers draining into the Arctic. Cytochrome B, cytochrome oxidase subunit 1, and ATP synthase F0 subunit 6 mitochondrial sites were analyzed from 25 samples to reconstruct the phylogenetic history of pygmy whitefish. Two haplogroups belonging to the east and west Chukotkan ranges were identified; both groups are closely related to Alaskan pigmy whitefish and distant from the Cascadia-Mackenzie (Peace) populations. Combining the distribution patterns, phylogenetic network topology, and the contemporary knowledge on the glaciation history of the region, we suggest a possible colonization pathway over Beringia region and beyond it. The basic biological characteristics (fork length, number of gill rakers, and pyloric caeca, age structure, and feeding) are also presented to characterize the populations over the investigated range

    Microbial community structure in a host–parasite system: the case of Prussian carp and its parasitic crustaceans

    No full text
    Aims: The aim of the study was to investigate the skin microbiota of Prussian carp infested by ectoparasites from the genera Argulus and Lernaea. Methods and Results: Associated microbiota of skin of Prussian carp and ectoparasites were investigated by sequencing of the V3, V4 hypervariable regions of 16S rRNA using Illumina MiSeq sequencing platform. Conclusions: According to the Spearman rank correlation test, the increasing load of ulcerations of the skin of Prussian carp was weakly negatively correlated with reduction in the abundance of the following taxa: Acrobacter, bacteria C39 (Rhodocyclaceae), Rheinheimera, Comamonadaceae, Helicobacteraceae and Vogesella. In this study, the microbiota of ectoparasites from the genera Lernaea and Argulus were characterized for the first time. The microbiota associated with L. cyprinacea was significantly different from microbial communities of intact skin mucosa of both infested and uninfested fish and skin ulcers (ADONIS, P ≀ 005). The microbiota associated with parasitic crustaceans L. cyprinacea were dominated by unclassified bacteria from Comamonadaceae, Aeromonadaceae families and Vogesella. The dominant microbiota of A. foliaceus were represented by Flavobacterium, Corynebacterium and unclassified Comamonadaceae. Significance and Impact of the Study: Results from these studies indicate that ectoparasites have the potential to alter skin microbiota, which can play a possible role in the transmission of secondary bacterial infections in fish, caused by pathogenic bacteria

    Northern Hawk Owl invasions in the forest-steppe of Western Siberia

    Get PDF
    The article presents data on the invasions of the hawk owl (Surnia ulula) into the forest-steppe of Western Siberia on the territory of the Novosibirsk and Kemerovo regions, Altai Krai and Krasnoyarsk Krai territories

    A re-evaluation of conflicting taxonomic structures of Eurasian Triaenophorus spp. (Cestoda, Bothriocephalidea: Triaenophoridae) based on partial cox1 mtDNA and 28S rRNA gene sequences

    Get PDF
    Cestodes of the genus Triaenophorus Rudolphi, 1793 are widely distributed parasites of Esocidae, Percidae, Salmonidae, Thimallidae, Cobitidae, Osmeridae, Cyprinidae, Cottiidae, Lotidae, and several others in the Holarctic. The taxonomic arrangements of different authors, based on morphological and ecological–biogeographic characters, suggest the presence of two to five species of this genus in Eurasia. The genetic variation of Eurasian Triaenophorus spp. was evaluated using DNA barcoding (cox1 and 28S gene sequences). This confirmed the validity of five Triaenophorus species: T. amurensis, T. crassus, T. meridionalis, T. nodulosus, and T. orientalis. We demonstrated systematic concordance between traditional meristic criteria and DNA sequence data. Phylogenetic reconstructions support the monophyletic origin of the group of species with a long basal plate of the scolex hook (T. crassus, T. meridionalis, and T. orientalis). Triaenophorus crassus is represented by two haplogroups, associated with Siberia and northwestern Russia. Our results show differences between T. nodulosus, T. amurensis, and T. crassus in terms of the haplotype diversity level, which are probably related to the Quaternary history of the development of their ranges, as well as the degree of euryxeny to the second intermediate host.info:eu-repo/semantics/acceptedVersio
    corecore