1,343 research outputs found
Dissipative heat engine is thermodynamically inconsistent
A heat engine operating on the basis of the Carnot cycle is considered, where
the mechanical work performed is dissipated within the engine at the
temperature of the warmer isotherm and the resulting heat is added to the
engine together with an external heat input. The resulting work performed by
the engine per cycle is increased at the expense of dissipated work produced in
the previous cycle. It is shown that such a dissipative heat engine is
thermodynamically inconsistent violating the first and second laws of
thermodynamics. The existing physical models employing the dissipative heat
engine concept, in particular, the heat engine model of hurricane development,
are physically invalid.Comment: 9 pages, 2 figure
Beyond the Spin Model Approximation for Ramsey Spectroscopy
Ramsey spectroscopy has become a powerful technique for probing
non-equilibrium dynamics of internal (pseudospin) degrees of freedom of
interacting systems. In many theoretical treatments, the key to understanding
the dynamics has been to assume the external (motional) degrees of freedom are
decoupled from the pseudospin degrees of freedom. Determining the validity of
this approximation -- known as the spin model approximation -- is complicated,
and has not been addressed in detail. Here we shed light in this direction by
calculating Ramsey dynamics exactly for two interacting spin-1/2 particles in a
harmonic trap. We focus on -wave-interacting fermions in quasi-one and
two-dimensional geometries. We find that in 1D the spin model assumption works
well over a wide range of experimentally-relevant conditions, but can fail at
time scales longer than those set by the mean interaction energy. Surprisingly,
in 2D a modified version of the spin model is exact to first order in the
interaction strength. This analysis is important for a correct interpretation
of Ramsey spectroscopy and has broad applications ranging from precision
measurements to quantum information and to fundamental probes of many-body
systems
Interpolation of equation-of-state data
Aims. We use Hermite splines to interpolate pressure and its derivatives
simultaneously, thereby preserving mathematical relations between the
derivatives. The method therefore guarantees that thermodynamic identities are
obeyed even between mesh points. In addition, our method enables an estimation
of the precision of the interpolation by comparing the Hermite-spline results
with those of frequent cubic (B-) spline interpolation.
Methods. We have interpolated pressure as a function of temperature and
density with quintic Hermite 2D-splines. The Hermite interpolation requires
knowledge of pressure and its first and second derivatives at every mesh point.
To obtain the partial derivatives at the mesh points, we used tabulated values
if given or else thermodynamic equalities, or, if not available, values
obtained by differentiating B-splines.
Results. The results were obtained with the grid of the SAHA-S
equation-of-state (EOS) tables. The maximum difference lies in the range
from to , and difference varies from to
. Specifically, for the points of a solar model, the maximum
differences are one order of magnitude smaller than the aforementioned values.
The poorest precision is found in the dissociation and ionization regions,
occurring at K. The best precision is achieved at
higher temperatures, K. To discuss the significance of the
interpolation errors we compare them with the corresponding difference between
two different equation-of-state formalisms, SAHA-S and OPAL 2005. We find that
the interpolation errors of the pressure are a few orders of magnitude less
than the differences from between the physical formalisms, which is
particularly true for the solar-model points.Comment: Accepted for publication in A&
Scaling the neutral atom Rydberg gate quantum computer by collective encoding in Holmium atoms
We discuss a method for scaling a neutral atom Rydberg gate quantum processor
to a large number of qubits. Limits are derived showing that the number of
qubits that can be directly connected by entangling gates with errors at the
level using long range Rydberg interactions between sites in an
optical lattice, without mechanical motion or swap chains, is about 500 in two
dimensions and 7500 in three dimensions. A scaling factor of 60 at a smaller
number of sites can be obtained using collective register encoding in the
hyperfine ground states of the rare earth atom Holmium. We present a detailed
analysis of operation of the 60 qubit register in Holmium. Combining a lattice
of multi-qubit ensembles with collective encoding results in a feasible design
for a 1000 qubit fully connected quantum processor.Comment: 6 figure
Photon storage in Lambda-type optically dense atomic media. I. Cavity model
In a recent paper [Gorshkov et al., Phys. Rev. Lett. 98, 123601 (2007)], we
used a universal physical picture to optimize and demonstrate equivalence
between a wide range of techniques for storage and retrieval of photon wave
packets in Lambda-type atomic media in free space, including the adiabatic
reduction of the photon group velocity, pulse-propagation control via
off-resonant Raman techniques, and photon-echo-based techniques. In the present
paper, we perform the same analysis for the cavity model. In particular, we
show that the retrieval efficiency is equal to C/(1+C) independent of the
retrieval technique, where C is the cooperativity parameter. We also derive the
optimal strategy for storage and, in particular, demonstrate that at any
detuning one can store, with the optimal efficiency of C/(1+C), any smooth
input mode satisfying T C gamma >> 1 and a certain class of resonant input
modes satisfying T C gamma ~ 1, where T is the duration of the input mode and 2
gamma is the transition linewidth. In the two subsequent papers of the series,
we present the full analysis of the free-space model and discuss the effects of
inhomogeneous broadening on photon storage.Comment: 16 pages, 2 figures. V2: significant changes in presentation, new
references, higher resolution of figure
Photon storage in Lambda-type optically dense atomic media. II. Free-space model
In a recent paper [Gorshkov et al., Phys. Rev. Lett. 98, 123601 (2007)], we
presented a universal physical picture for describing a wide range of
techniques for storage and retrieval of photon wave packets in Lambda-type
atomic media in free space, including the adiabatic reduction of the photon
group velocity, pulse-propagation control via off-resonant Raman techniques,
and photon-echo based techniques. This universal picture produced an optimal
control strategy for photon storage and retrieval applicable to all approaches
and yielded identical maximum efficiencies for all of them. In the present
paper, we present the full details of this analysis as well some of its
extensions, including the discussion of the effects of non-degeneracy of the
two lower levels of the Lambda system. The analysis in the present paper is
based on the intuition obtained from the study of photon storage in the cavity
model in the preceding paper [Gorshkov et al., Phys. Rev. A 76, 033804 (2007)].Comment: 26 pages, 8 figures. V2: significant changes in presentation, new
references, higher resolution of figure
- …