968 research outputs found
Nuclear prolate-shape dominance with the Woods-Saxon potential
We study the prolate-shape predominance of the nuclear ground-state
deformation by calculating the masses of more than two thousand even-even
nuclei using the Strutinsky method, modified by Kruppa, and improved by us. The
influences of the surface thickness of the single-particle potentials, the
strength of the spin-orbit potential, and the pairing correlations are
investigated by varying the parameters of the Woods-Saxon potential and the
pairing interaction. The strong interference between the effects of the surface
thickness and the spin-orbit potential is confirmed to persist for six sets of
the Woods-Saxon potential parameters. The observed behavior of the ratios of
prolate, oblate, and spherical nuclei versus potential parameters are rather
different in different mass regions. It is also found that the ratio of
spherical nuclei increases for weakly bound unstable nuclei. Differences of the
results from the calculations with the Nilsson potential are described in
detail.Comment: 16 pages, 17 figure
A Particle number conserving shell-correction method
The shell correction method is revisited. Contrary to the traditional
Strutinsky method, the shell energy is evaluated by an averaging over the
number of particles and not over the single-particle energies, which is more
consistent with the definition of the macroscopic energy. In addition, the
smooth background is subtracted before averaging the sum of single-particle
energies, which significantly improves the plateau condition and allows to
apply the method also for nuclei close to the proton or neutron drip lines. A
significant difference between the shell correction energy obtained with the
traditional and the new method is found in particular for highly degenerated
single-particle spectra (as i.e. in magic nuclei) while for deformed nuclei
(where the degeneracy is lifted to a large extent) both estimates are close,
except in the region of super or hyper-deformed states.Comment: 11 pages in LaTeX, 7 figure
Semiconductor driver of pyroelectric accelerator of charged particles
The possibility for application of semiconductor element for heating of pyroelectric crystalin a pyroelectric accelerator of charged particles or pyroelectric X-ray generator is at first proposed and demonstrated experimentally. Spectra of X-ray radiation measured at the heating of the pyroelectric crystal LiNbO3 by silicon diode at different pressures of residual gas are presente
Nuclear reactions in hot stellar matter and nuclear surface deformation
Cross-sections for capture reactions of charged particles in hot stellar
matter turn out be increased by the quadrupole surface oscillations, if the
corresponding phonon energies are of the order of the star temperature. The
increase is studied in a model that combines barrier distribution induced by
surface oscillations and tunneling. The capture of charged particles by nuclei
with well-deformed ground-state is enhanced in stellar matter. It is found that
the influence of quadrupole surface deformation on the nuclear reactions in
stars grows, when mass and proton numbers in colliding nuclei increase.Comment: 12 pages, 10 figure
Momentum distribution in heavy deformed nuclei: role of effective mass
The impact of nuclear deformation on the momentum distributions (MD) of
occupied proton states in U is studied with a phenomenological
Woods-Saxon (WS) shell model and the self-consistent Skyrme-Hartree-Fock (SHF)
scheme. Four Skyrme parameterizations (SkT6, SkM*, SLy6, SkI3) with different
effective masses are used. The calculations reveal significant deformation
effects in the low-momentum domain of states, mainly of
those lying near the Fermi surface. For other states, the deformation effect on
MD is rather small and may be neglected. The most remarkable result is that the
very different Skyrme parameterizations and the WS potential give about
identical MD. This means that the value of effective mass, being crucial for
the description of the spectra, is not important for the spatial shape of the
wave functions and thus for the MD. In general, it seems that, for the
description of MD at MeV/c, one may use any single-particle
scheme (phenomenological or self-consistent) fitted properly to the global
ground state properties.Comment: 14 pages, 6 figure
Molecular structure of highly-excited resonant states in Mg and the corresponding Be+O and C+C decays
Exotic Be and C decays from high-lying resonances in Mg are
analyzed in terms of a cluster model. The calculated quantities agree well with
the corresponding experimental data. It is found that the calculated decay
widths are very sensitive to the angular momentum carried by the outgoing
cluster. It is shown that this property makes cluster decay a powerful tool to
determine the spin as well as the molecular structures of the resonances.Comment: 17 pages, no figur
Optimal speed of temperature change of a crystal in a pyroelectric X-ray radiation source
In this work we present the results of the experimental studies of the dependence of the X-ray radiation on the temperature change speed of the lithium tantalate monocrystal in the pyroelectric source of the X-ray radiation. We have found an optimized linear temperature speed change pattern for the pyroelectric crystal designed for generation of the X-ray radiation with enhanced capabilitie
Compact neutron generator with nanotube ion source
In this letter, we report the observation of fast neutrons generated when a positive acceleration potential is applied to an array of orientated carbon nanotubes, which are used as an ion source. The neutrons with energy of 2.45 MeV are generated as a result of D-D fusion reaction. The dependencies of the neutron yield on the value of the applied potential and residual pressure of deuterium are measured. The proposed approach is planned to be used for the development of compact neutron generator
Nuclear Magnetic Quadrupole Moments in Single Particle Approximation
A static magnetic quadrupole moment of a nucleus, induced by T- and P-odd
nucleon-nucleon interaction, is investigated in the single-particle
approximation. Models are considered allowing for analytical solution. The
problem is also treated numerically in a Woods-Saxon potential with spin-orbit
interaction. The stability of results is discussed.Comment: LATEX, 9 pages, 1 postscript figure available upon request from
"[email protected]". BINP 94-4
Evaluation of the mean intensity of the P-odd mixing of nuclear compound states
A temperature version of the shell-optical-model approach for describing the
low-energy compound-to-compound transitions induced by external single-particle
fields is given. The approach is applied to evaluate the mean intensity of the
P-odd mixing of nuclear compound states. Unified description for the mixing and
electromagnetic transitions allows one to evaluate the mean intensity without
the use of free parameters. The valence-mechanism contribution to the mentioned
intensity is also evaluated. Calculation results are compared with the data
deduced from cross sections of relevant neutron-induced reactions.Comment: LaTeX, 10 page
- …