6 research outputs found

    Control of Strong-Laser-Field Coupling to Electrons in Solid Targets with Wavelength-Scale Spheres

    Get PDF
    Irradiation of a planar solid by an intense laser pulse leads to fast electron acceleration and hard x-ray production. We have investigated whether this high field production of fast electrons can be controlled by introducing dielectric spheres of well-defined size on the target surface. We find that the presence of spheres with a diameter slightly larger than half the laser wavelength leads to Mie enhancements of the laser field which, accompanied by multipass stochastic heating of the electrons, leads to significantly enhanced hard x-ray yield and temperature

    Hot Electron and X-ray Production from Intense Laser Irradiation of Wavelength-Scale Polystyrene Spheres

    Get PDF
    Hot electron and x-ray production from solid targets coated with polystyrene-spheres which are irradiated with high-contrast, 100 fs, 400 nm light pulses at intensity up to 2×1017 W/cm2 have been studied. The peak hard x-ray signal from uncoated fused silica targets is an order of magnitude smaller than the signal from targets coated with submicron sized spheres. The temperature of the x-rays in the case of sphere-coated targets is twice as hot as that of uncoated glass. A sphere-size scan of the x-ray yield and observation of a peak in both the x-ray production and temperature at a sphere diameter of 0.26 μm, indicate that these results are consistent with Mie enhancements of the laser field at the sphere surface and multipass stochastic heating of the hot electrons in the oscillating laser field. These results also match well with particle-in-cell simulations of the interaction

    K-shell Spectroscopy of Plasmas Created by Intense Laser Irradiation of Micron-scale Pyramid and Sphere Targets

    No full text
    K-shell spectra of targets with microstructured features irradiated by an intense femtosecond laser have been studied. Examination of Kα emission from laser irradiated Si targets coated with micron-scale polystyrene spheres indicates that the emission is enhanced by a factor of ∼3 over emission from planar solids. Sphere-coated targets also emit K-shell He-like Si radiation indicating the presence of a hot dense plasma beneath the microspheres. Furthermore, Kα from Ti foils coupled to micro-tipped reentrant pyramid and wedge shaped targets has been studied, however, no significant enhancement of the Kα yield is observed for these kinds of targets. These studies illustrate that, with correct tailoring of the target surface, field enhancements can be used to increase X-ray emission from intensely irradiated targets
    corecore