869 research outputs found

    2+1 Gravity without dynamics

    Full text link
    A three dimensional generally covariant theory is described that has a 2+1 canonical decomposition in which the Hamiltonian constraint, which generates the dynamics, is absent. Physical observables for the theory are described and the classical and quantum theories are compared with ordinary 2+1 gravity.Comment: 9 page

    Non-minimal couplings, quantum geometry and black hole entropy

    Full text link
    The black hole entropy calculation for type I isolated horizons, based on loop quantum gravity, is extended to include non-minimally coupled scalar fields. Although the non-minimal coupling significantly modifies quantum geometry, the highly non-trivial consistency checks for the emergence of a coherent description of the quantum horizon continue to be met. The resulting expression of black hole entropy now depends also on the scalar field precisely in the fashion predicted by the first law in the classical theory (with the same value of the Barbero-Immirzi parameter as in the case of minimal coupling).Comment: 14 pages, no figures, revtex4. Section III expanded and typos correcte

    Two dimensional general covariance from three dimensions

    Get PDF
    A 3d generally covariant field theory having some unusual properties is described. The theory has a degenerate 3-metric which effectively makes it a 2d field theory in disguise. For 2-manifolds without boundary, it has an infinite number of conserved charges that are associated with graphs in two dimensions and the Poisson algebra of the charges is closed. For 2-manifolds with boundary there are additional observables that have a Kac-Moody Poisson algebra. It is further shown that the theory is classically integrable and the general solution of the equations of motion is given. The quantum theory is described using Dirac quantization, and it is shown that there are quantum states associated with graphs in two dimensions.Comment: 10 pages (Latex), Alberta-Thy-19-9

    Isolated horizons in higher-dimensional Einstein-Gauss-Bonnet gravity

    Full text link
    The isolated horizon framework was introduced in order to provide a local description of black holes that are in equilibrium with their (possibly dynamic) environment. Over the past several years, the framework has been extended to include matter fields (dilaton, Yang-Mills etc) in D=4 dimensions and cosmological constant in D3D\geq3 dimensions. In this article we present a further extension of the framework that includes black holes in higher-dimensional Einstein-Gauss-Bonnet (EGB) gravity. In particular, we construct a covariant phase space for EGB gravity in arbitrary dimensions which allows us to derive the first law. We find that the entropy of a weakly isolated and non-rotating horizon is given by S=(1/4GD)SD2ϵ~(1+2αR)\mathcal{S}=(1/4G_{D})\oint_{S^{D-2}}\bm{\tilde{\epsilon}}(1+2\alpha\mathcal{R}). In this expression SD2S^{D-2} is the (D2)(D-2)-dimensional cross section of the horizon with area form ϵ~\bm{\tilde{\epsilon}} and Ricci scalar R\mathcal{R}, GDG_{D} is the DD-dimensional Newton constant and α\alpha is the Gauss-Bonnet parameter. This expression for the horizon entropy is in agreement with those predicted by the Euclidean and Noether charge methods. Thus we extend the isolated horizon framework beyond Einstein gravity.Comment: 18 pages; 1 figure; v2: 19 pages; 2 references added; v3: 19 pages; minor corrections; 1 reference added; to appear in Classical and Quantum Gravit

    Non-minimally coupled scalar fields and isolated horizons

    Full text link
    The isolated horizon framework is extended to include non-minimally coupled scalar fields. As expected from the analysis based on Killing horizons, entropy is no longer given just by (a quarter of) the horizon area but also depends on the scalar field. In a subsequent paper these results will serve as a point of departure for a statistical mechanical derivation of entropy using quantum geometry.Comment: 14 pages, 1 figure, revtex4. References and minor clarifications adde

    A General Definition of "Conserved Quantities" in General Relativity and Other Theories of Gravity

    Get PDF
    In general relativity, the notion of mass and other conserved quantities at spatial infinity can be defined in a natural way via the Hamiltonian framework: Each conserved quantity is associated with an asymptotic symmetry and the value of the conserved quantity is defined to be the value of the Hamiltonian which generates the canonical transformation on phase space corresponding to this symmetry. However, such an approach cannot be employed to define `conserved quantities' in a situation where symplectic current can be radiated away (such as occurs at null infinity in general relativity) because there does not, in general, exist a Hamiltonian which generates the given asymptotic symmetry. (This fact is closely related to the fact that the desired `conserved quantities' are not, in general, conserved!) In this paper we give a prescription for defining `conserved quantities' by proposing a modification of the equation that must be satisfied by a Hamiltonian. Our prescription is a very general one, and is applicable to a very general class of asymptotic conditions in arbitrary diffeomorphism covariant theories of gravity derivable from a Lagrangian, although we have not investigated existence and uniqueness issues in the most general contexts. In the case of general relativity with the standard asymptotic conditions at null infinity, our prescription agrees with the one proposed by Dray and Streubel from entirely different considerations.Comment: 39 pages, no figure

    Ashtekar Variables in Classical General Realtivity

    Full text link
    This paper contains an introduction into Ashtekar's reformulation of General Relativity in terms of connection variables. To appear in "Canonical Gravity - From Classical to Quantum", ed. by J. Ehlers and H. Friedrich, Springer Verlag (1994).Comment: 31 Pages, Plain-Tex; Further comments were added, minor grammatical changes made and typos correcte

    Production and decay of evolving horizons

    Full text link
    We consider a simple physical model for an evolving horizon that is strongly interacting with its environment, exchanging arbitrarily large quantities of matter with its environment in the form of both infalling material and outgoing Hawking radiation. We permit fluxes of both lightlike and timelike particles to cross the horizon, and ask how the horizon grows and shrinks in response to such flows. We place a premium on providing a clear and straightforward exposition with simple formulae. To be able to handle such a highly dynamical situation in a simple manner we make one significant physical restriction, that of spherical symmetry, and two technical mathematical restrictions: (1) We choose to slice the spacetime in such a way that the space-time foliations (and hence the horizons) are always spherically symmetric. (2) Furthermore we adopt Painleve-Gullstrand coordinates (which are well suited to the problem because they are nonsingular at the horizon) in order to simplify the relevant calculations. We find particularly simple forms for surface gravity, and for the first and second law of black hole thermodynamics, in this general evolving horizon situation. Furthermore we relate our results to Hawking's apparent horizon, Ashtekar et al's isolated and dynamical horizons, and Hayward's trapping horizons. The evolving black hole model discussed here will be of interest, both from an astrophysical viewpoint in terms of discussing growing black holes, and from a purely theoretical viewpoint in discussing black hole evaporation via Hawking radiation.Comment: 25 pages, uses iopart.cls V2: 5 references added; minor typos; V3: some additional clarifications, additional references, additional appendix on the Viadya spacetime. This version published in Classical and Quiantum Gravit

    Black hole boundaries

    Full text link
    Classical black holes and event horizons are highly non-local objects, defined in relation to the causal past of future null infinity. Alternative, quasilocal characterizations of black holes are often used in mathematical, quantum, and numerical relativity. These include apparent, killing, trapping, isolated, dynamical, and slowly evolving horizons. All of these are closely associated with two-surfaces of zero outward null expansion. This paper reviews the traditional definition of black holes and provides an overview of some of the more recent work on alternative horizons.Comment: 27 pages, 8 figures, invited Einstein Centennial Review Article for CJP, final version to appear in journal - glossary of terms added, typos correcte

    Coordinate time dependence in Quantum Gravity

    Get PDF
    The intuitive classical space-time picture breaks down in quantum gravity, which makes a comparison and the development of semiclassical techniques quite complicated. Using ingredients of the group averaging method to solve constraints one can nevertheless introduce a classical coordinate time into the quantum theory, and use it to investigate the way a semiclassical continuous description emerges from discrete quantum evolution. Applying this technique to test effective classical equations of loop cosmology and their implications for inflation and bounces, we show that the effective semiclassical theory is in good agreement with the quantum description even at short scales.Comment: 35 pages, 17 figure. Revised version. To appear in Phys. Rev.
    corecore