444 research outputs found

    Hole Transport in p-Type ZnO

    Full text link
    A two-band model involving the A- and B-valence bands was adopted to analyze the temperature dependent Hall effect measured on N-doped \textit{p}-type ZnO. The hole transport characteristics (mobilities, and effective Hall factor) are calculated using the ``relaxation time approximation'' as a function of temperature. It is shown that the lattice scattering by the acoustic deformation potential is dominant. In the calculation of the scattering rate for ionized impurity mechanism, the activation energy of 100 or 170 meV is used at different compensation ratios between donor and acceptor concentrations. The theoretical Hall mobility at acceptor concentration of 7×10187 \times 10^{18} cm3^3 is about 70 cm2^2V−1^{-1}s−1^{-1} with the activation energy of 100 meV and the compensation ratio of 0.8 at 300 K. We also found that the compensation ratios conspicuously affected the Hall mobilities.Comment: 5page, 5 figures, accepted for publication in Jpn. J. Appl. Phy

    Gallium concentration dependence of room-temperature near-bandedge luminescence in n-type ZnO:Ga

    Full text link
    We investigated the optical properties of epitaxial \textit{n}-type ZnO films grown on lattice-matched ScAlMgO4_4 substrates. As the Ga doping concentration increased up to 6×10206 \times 10^{20} cm−3^{-3}, the absorption edge showed a systematic blueshift, consistent with the Burstein-Moss effect. A bright near-bandedge photoluminescence (PL) could be observed even at room temperature, the intensity of which increased monotonically as the doping concentration was increased except for the highest doping level. It indicates that nonradiative transitions dominate at a low doping density. Both a Stokes shift and broadening in the PL band are monotonically increasing functions of donor concentration, which was explained in terms of potential fluctuations caused by the random distribution of donor impurities.Comment: accepted for publication for Applied Physics Letters 4 figure

    Nonlinear response of a MgZnO/ZnO heterostructure close to zero bias

    Get PDF
    We report on magnetotransport properties of a MgZnO/ZnO heterostructure subjected to weak direct currents. We find that in the regime of overlapping Landau levels, the differential resistivity acquires a quantum correction proportional to both the square of the current and the Dingle factor. The analysis shows that the correction to the differential resistivity is dominated by a current-induced modification of the electron distribution function and allows us to access both quantum and inelastic scattering rates.Comment: 4 pages, 3 figure

    Temperature dependent magnetotransport around ν\nu= 1/2 in ZnO heterostructures

    Full text link
    The sequence of prominent fractional quantum Hall states up to ν\nu=5/11 around ν\nu=1/2 in a high mobility two-dimensional electron system confined at oxide heterointerface (ZnO) is analyzed in terms of the composite fermion model. The temperature dependence of \Rxx oscillations around ν\nu=1/2 yields an estimation of the composite fermion effective mass, which increases linearly with the magnetic field. This mass is of similar value to an enhanced electron effective mass, which in itself arises from strong electron interaction. The energy gaps of fractional states and the temperature dependence of \Rxx at ν\nu=1/2 point to large residual interactions between composite fermions.Comment: 5 pages, 4 Figure
    • …
    corecore