5 research outputs found

    Image usefulness of compressed surveillance footage with different scene contents

    Get PDF
    The police use both subjective (i.e. police staff) and automated (e.g. face recognition systems) methods for the completion of visual tasks (e.g person identification). Image quality for police tasks has been defined as the image usefulness, or image suitability of the visual material to satisfy a visual task. It is not necessarily affected by any artefact that may affect the visual image quality (i.e. decrease fidelity), as long as these artefacts do not affect the relevant useful information for the task. The capture of useful information will be affected by the unconstrained conditions commonly encountered by CCTV systems such as variations in illumination and high compression levels. The main aim of this thesis is to investigate aspects of image quality and video compression that may affect the completion of police visual tasks/applications with respect to CCTV imagery. This is accomplished by investigating 3 specific police areas/tasks utilising: 1) the human visual system (HVS) for a face recognition task, 2) automated face recognition systems, and 3) automated human detection systems. These systems (HVS and automated) were assessed with defined scene content properties, and video compression, i.e. H.264/MPEG-4 AVC. The performance of imaging systems/processes (e.g. subjective investigations, performance of compression algorithms) are affected by scene content properties. No other investigation has been identified that takes into consideration scene content properties to the same extend. Results have shown that the HVS is more sensitive to compression effects in comparison to the automated systems. In automated face recognition systems, `mixed lightness' scenes were the most affected and `low lightness' scenes were the least affected by compression. In contrast the HVS for the face recognition task, `low lightness' scenes were the most affected and `medium lightness' scenes the least affected. For the automated human detection systems, `close distance' and `run approach' are some of the most commonly affected scenes. Findings have the potential to broaden the methods used for testing imaging systems for security applications

    Comparative performance between human and automated face recognition systems, using CCTV imagery, different compression levels and scene parameters

    Get PDF
    In this investigation we identify relationships between human and automated face recognition systems with respect to compression. Further, we identify the most influential scene parameters on the performance of each recognition system. The work includes testing of the systems with compressed Closed-Circuit Television (CCTV) footage, consisting of quantified scene (footage) parameters. Parameters describe the content of scenes concerning camera to subject distance, facial angle, scene brightness, and spatio-temporal busyness. These parameters have been previously shown to affect the human visibility of useful facial information, but not much work has been carried out to assess the influence they have on automated recognition systems. In this investigation, the methodology previously employed in the human investigation is adopted, to assess performance of three different automated systems: Principal Component Analysis, Linear Discriminant Analysis, and Kernel Fisher Analysis. Results show that the automated systems are more tolerant to compression than humans. In automated systems, mixed brightness scenes were the most affected and low brightness scenes were the least affected by compression. In contrast for humans, low brightness scenes were the most affected and medium brightness scenes the least affected. Findings have the potential to broaden the methods used for testing imaging systems for security applications

    A case study in identifying acceptable bitrates for human face recognition tasks

    Get PDF
    Face recognition from images or video footage requires a certain level of recorded image quality. This paper derives acceptable bitrates (relating to levels of compression and consequently quality) of footage with human faces, using an industry implementation of the standard H.264/MPEG-4 AVC and the Closed-Circuit Television (CCTV) recording systems on London buses. The London buses application is utilized as a case study for setting up a methodology and implementing suitable data analysis for face recognition from recorded footage, which has been degraded by compression. The majority of CCTV recorders on buses use a proprietary format based on the H.264/MPEG-4 AVC video coding standard, exploiting both spatial and temporal redundancy. Low bitrates are favored in the CCTV industry for saving storage and transmission bandwidth, but they compromise the image usefulness of the recorded imagery. In this context, usefulness is determined by the presence of enough facial information remaining in the compressed image to allow a specialist to recognize a person. The investigation includes four steps: (1) Development of a video dataset representative of typical CCTV bus scenarios. (2) Selection and grouping of video scenes based on local (facial) and global (entire scene) content properties. (3) Psychophysical investigations to identify the key scenes, which are most affected by compression, using an industry implementation of H.264/MPEG-4 AVC. (4) Testing of CCTV recording systems on buses with the key scenes and further psychophysical investigations. The results showed a dependency upon scene content properties. Very dark scenes and scenes with high levels of spatial–temporal busyness were the most challenging to compress, requiring higher bitrates to maintain useful information

    Acceptable bit-rates for human face identification from CCTV imagery

    No full text
    The objective of this investigation is to produce recommendations for acceptable bit-rates of CCTV footage of people onboard London buses. The majority of CCTV recorders on buses use a proprietary format based on the H.264/AVC video coding standard, exploiting both spatial and temporal redundancy. Low bit-rates are favored in the CCTV industry but they compromise the image usefulness of the recorded imagery. In this context usefulness is defined by the presence of enough facial information remaining in the compressed image to allow a specialist to identify a person. The investigation includes four steps: 1) Collection of representative video footage. 2) The grouping of video scenes based on content attributes. 3) Psychophysical investigations to identify key scenes, which are most affected by compression. 4) Testing of recording systems using the key scenes and further psychophysical investigations. The results are highly dependent upon scene content. For example, very dark and very bright scenes were the most challenging to compress, requiring higher bit-rates to maintain useful information. The acceptable bit-rates are also found to be dependent upon the specific CCTV system used to compress the footage, presenting challenges in drawing conclusions about universal ‘average’ bit-rates

    A case study in identifying acceptable bitrates for human face recognition tasks

    No full text
    International audienceFace recognition from images or video footage requires a certain level of recorded image quality. This paper derives acceptable bitrates (relating to levels of compression and consequently quality) of footage with human faces, using an industry implementation of the standard H.264/MPEG-4 AVC and the Closed-Circuit Television (CCTV) recording systems on London buses. The London buses application is utilized as a case study for setting up a methodology and implementing suitable data analysis for face recognition from recorded footage, which has been degraded by compression. The majority of CCTV recorders on buses use a proprietary format based on the H.264/MPEG-4 AVC video coding standard, exploiting both spatial and temporal redundancy. Low bitrates are favored in the CCTV industry for saving storage and transmission bandwidth, but they compromise the image usefulness of the recorded imagery. In this context, usefulness is determined by the presence of enough facial information remaining in the compressed image to allow a specialist to identify a person. The investigation includes four steps: (1) Development of a video dataset representative of typical CCTV bus scenarios. (2) Selection and grouping of video scenes based on local (facial) and global (entire scene) content properties. (3) Psychophysical investigations to identify the key scenes, which are most affected by compression, using an industry implementation of H.264/MPEG-4 AVC. (4) Testing of CCTV recording systems on buses with the key scenes and further psychophysical investigations. The results showed a dependency upon scene content properties. Very dark scenes and scenes with high levels of spatial–temporal busyness were the most challenging to compress, requiring higher bitrates to maintain useful information
    corecore