360 research outputs found

    The Role of Human Knowledge in Explainable AI

    Get PDF
    As the performance and complexity of machine learning models have grown significantly over the last years, there has been an increasing need to develop methodologies to describe their behaviour. Such a need has mainly arisen due to the widespread use of black-box models, i.e., high-performing models whose internal logic is challenging to describe and understand. Therefore, the machine learning and AI field is facing a new challenge: making models more explainable through appropriate techniques. The final goal of an explainability method is to faithfully describe the behaviour of a (black-box) model to users who can get a better understanding of its logic, thus increasing the trust and acceptance of the system. Unfortunately, state-of-the-art explainability approaches may not be enough to guarantee the full understandability of explanations from a human perspective. For this reason, human-in-the-loop methods have been widely employed to enhance and/or evaluate explanations of machine learning models. These approaches focus on collecting human knowledge that AI systems can then employ or involving humans to achieve their objectives (e.g., evaluating or improving the system). This article aims to present a literature overview on collecting and employing human knowledge to improve and evaluate the understandability of machine learning models through human-in-the-loop approaches. Furthermore, a discussion on the challenges, state-of-the-art, and future trends in explainability is also provided

    EXP-Crowd: A Gamified Crowdsourcing Framework for Explainability

    Get PDF
    The spread of AI and black-box machine learning models made it necessary to explain their behavior. Consequently, the research field of Explainable AI was born. The main objective of an Explainable AI system is to be understood by a human as the final beneficiary of the model. In our research, we frame the explainability problem from the crowds point of view and engage both users and AI researchers through a gamified crowdsourcing framework. We research whether it's possible to improve the crowds understanding of black-box models and the quality of the crowdsourced content by engaging users in a set of gamified activities through a gamified crowdsourcing framework named EXP-Crowd. While users engage in such activities, AI researchers organize and share AI- and explainability-related knowledge to educate users. We present the preliminary design of a game with a purpose (G.W.A.P.) to collect features describing real-world entities which can be used for explainability purposes. Future works will concretise and improve the current design of the framework to cover specific explainability-related needs

    A Two-Component regulatory system with opposite effects on glycopeptide antibiotic biosynthesis and resistance

    Get PDF
    The glycopeptide A40926, produced by the actinomycete Nonomuraea gerenzanensis, is the precursor of dalbavancin, a second-generation glycopeptide antibiotic approved for clinical use in the USA and Europe in 2014 and 2015, respectively. The final product of the biosynthetic pathway is an O-acetylated form of A40926 (acA40926). Glycopeptide biosynthesis in N. gerenzanensis is dependent upon the dbv gene cluster that encodes, in addition to the two essential positive regulators Dbv3 and Dbv4, the putative members of a two-component signal transduction system, specifically the response regulator Dbv6 and the sensor kinase Dbv22. The aim of this work was to assign a role to these two genes. Our results demonstrate that deletion of dbv22 leads to an increased antibiotic production with a concomitant reduction in glycopeptide resistance. Deletion of dbv6 results in a similar phenotype, although the effects are not as strong as in the Δdbv22 mutant. Consistently, quantitative RT-PCR analysis showed that Dbv6 and Dbv22 negatively regulate the regulatory genes (dbv3 and dbv4), as well as some dbv biosynthetic genes (dbv23 and dbv24), whereas Dbv6 and Dbv22 positively regulate transcription of the single, cluster-associated resistance gene. Finally, we demonstrate that exogenously added acA40926 and its precursor A40926 can modulate transcription of dbv genes but with an opposite extent: A40926 strongly stimulates transcription of the Dbv6/Dbv22 target genes while acA40926 has a neutral or negative effect on transcription of those genes. We propose a model in which glycopeptide biosynthesis in N. gerenzanensis is modulated through a positive feedback by the biosynthetic precursor A40926 and a negative feedback by the final product acA40926. In addition to previously reported control systems, this sophisticated control loop might help the producing strain cope with the toxicity of its own product. This work, besides leading to improved glycopeptide producing strains, enlarges our knowledge on the regulation of glycopeptide biosynthesis in actinomycetes, setting N. gerenzanensis and its two-component system Dbv6-Dbv22 apart from other glycopeptide producers

    Cardiovascular events and treatment of children with high risk medulloblastoma

    Get PDF
    Background: Children with high-risk medulloblastoma are treated with chemotherapeutic protocols which may affect heart function. We aimed to assesscardiovascular events (CVE) in children with medulloblastoma/primitive neuroectodermal tumors (PNET). Methods: We retrospectively collected data from a case series of 22 children with high-risk medulloblastoma/PNET admitted to the Santobono-Pausilipon Hospital, Naples, Italy from 2008 to 2016. All patients received the Milan HART protocol for high-risk brain malignancies as first line treatment (induction phase), followed by a consolidation phase with Thiotepa and hematopoietic stem cells transplantation, except for 1 patient who received the Milan HART as second line therapy. Four patients also received second line treatment, while 4 patients also received maintenance therapy. Patients underwent cardiac examination, including ECG, echocardiography and serum biomarkers, before antineoplastic treatment initiation and then when clinically needed. Six patients developed CVE (CVE group); 16 patients had no CVE (NO-CVE group). Findings: In the CVE group, 3 patients presented acute CVE during chemotherapy (2 patients with left ventricular (LV) dysfunction, 1 patient with arterial hypertension), while 3 patients presented chronic CVE after chemotherapy completion (2 patients with LV dysfunction, 1 patient with ectopic atrial tachycardia). After a 51 months median follow-up, 9 patients died: 4 from the CVE group (in 2 cases heart failure-related deaths) and 5 from the NO-CVE group (progression of disease). Interpretation: A relevant percentage of children treated for medulloblastoma/PNET develops CVE. Heart failure potentially due to chemotherapy may represent a cause of death. Hence, in these patients, strict cardiac surveillance is essential. Funding: No funding was associated with this study

    HNO Protects the Myocardium against Reperfusion Injury, Inhibiting the mPTP Opening via PKCε Activation

    Get PDF
    Donors of nitroxyl (HNO), the one electron-reduction product of nitric oxide (NO. ), posi-tively modulate cardiac contractility/relaxation while limiting ischemia-reperfusion (I/R) injury. The mechanisms underpinning HNO anti-ischemic effects remain poorly understood. Using isolated perfused rat hearts subjected to 30 min global ischemia/1 or 2 h reperfusion, here we tested whether, in analogy to NO., HNO protection requires PKCε translocation to mitochondria and KATP channels activation. To this end, we compared the benefits afforded by ischemic preconditioning (IPC; 3 cycles of I/R) with those eventually granted by the NO. donor, diethylamine/NO, DEA/NO, and two chemically unrelated HNO donors: Angeli’s salt (AS, a prototypic donor) and isopropyla-mine/NO (IPA/NO, a new HNO releaser). All donors were given for 19 min before I/R injury. In control I/R hearts (1 h reperfusion), infarct size (IS) measured via tetrazolium salt staining was 66 ± 5.5% of the area at risk. Both AS and IPA/NO were as effective as IPC in reducing IS [30.7 ± 2.2 (AS), 31 ± 2.9 (IPA/NO), and 31 ± 0.8 (IPC), respectively)], whereas DEA/NO was significantly less so (36.2 ± 2.6%, p < 0.001 vs. AS, IPA/NO, or IPC). IPA/NO protection was still present after 120 min of reperfusion, and the co-infusion with the PKCε inhibitor (PKCV1-2500 nM) prevented it (IS = 30 ± 0.5 vs. 61 ± 1.8% with IPA/NO alone, p < 0.01). Irrespective of the donor, HNO anti-ischemic effects were insensitive to the KATP channel inhibitor, 5-OH decanoate (5HD, 100 μM), that, in contrast, abrogated DEA/NO protection. Finally, both HNO donors markedly enhanced the mitochondrial permeability transition pore (mPTP) ROS threshold over control levels (≅35–40%), an action again insensitive to 5HD. Our study shows that HNO donors inhibit mPTP opening, thus limiting myo-cyte loss at reperfusion, a beneficial effect that requires PKCε translocation to the mitochondria but not mitochondrial K+ channels activation

    A genomic, transcriptomic and proteomic look at the GE2270 producer Planobispora rosea, an uncommon actinomycete

    Get PDF
    We report the genome sequence of Planobispora rosea ATCC 53733, a mycelium-forming soil-dweller belonging to one of the lesser studied genera of Actinobacteria and producing the thiopeptide GE2270. The P. rosea genome presents considerable convergence in gene organization and function with other members in the family Streptosporangiaceae, with a significant number (44%) of shared orthologs. Patterns of gene expression in P. rosea cultures during exponential and stationary phase have been analyzed using whole transcriptome shotgun sequencing and by proteome analysis. Among the differentially abundant proteins, those involved in protein metabolism are particularly represented, including the GE2270-insensitive EF-Tu. Two proteins from the pbt cluster, directing GE2270 biosynthesis, slightly increase their abundance values over time. While GE2270 production starts during the exponential phase, most pbt genes, as analyzed by qRT-PCR, are down-regulated. The exception is represented by pbtA, encoding the precursor peptide of the ribosomally synthesized GE2270, whose expression reached the highest level at the entry into stationary phase. Copyright

    Compartmentalized Phosphodiesterase-2 Activity Blunts β-Adrenergic Cardiac Inotropy via an NO/cGMP-Dependent Pathway

    Get PDF
    β-Adrenergic signaling via cAMP generation and PKA activation mediates the positive inotropic effect of catecholamines on heart cells. Given the large diversity of protein kinase A targets within cardiac cells, a precisely regulated and confined activity of such signaling pathway is essential for specificity of response. Phosphodiesterases (PDEs) are the only route for degrading cAMP and are thus poised to regulate intracellular cAMP gradients. Their spatial confinement to discrete compartments and functional coupling to individual receptors provides an efficient way to control local [cAMP] i in a stimulus-specific manner. By performing real-time imaging of cyclic nucleotides in living ventriculocytes we identify a prominent role of PDE2 in selectively shaping the cAMP response to catecholamines via a pathway involving β 3 -adrenergic receptors, NO generation and cGMP production. In cardiac myocytes, PDE2, being tightly coupled to the pool of adenylyl cyclases activated by β-adrenergic receptor stimulation, coordinates cGMP and cAMP signaling in a novel feedback control loop of the β-adrenergic pathway. In this, activation of β 3 -adrenergic receptors counteracts cAMP generation obtained via stimulation of β 1 /β 2 -adrenoceptors. Our study illustrates the key role of compartmentalized PDE2 in the control of catecholamine-generated cAMP and furthers our understanding of localized cAMP signaling
    • …
    corecore