267 research outputs found

    Radiative Effects in the Standard Model Extension

    Full text link
    The possibility of radiative effects induced by the Lorentz and CPT non-invariant interaction term for fermions in the Standard Model Extension is investigated. In particular, electron-positron photo-production and photon emission by electrons and positrons are studied. The rates of these processes are calculated in the Furry picture. It is demonstrated that the rates obtained in the framework of the model adopted strongly depend on the polarization states of the particles involved. As a result, ultra-relativistic particles produced should occupy states with a preferred spin orientation, i.e., photons have the sign of polarization opposite to the sign of the effective potential, while charged particle are preferably in the state with the helicity coinciding with the sign of the effective potential. This leads to evident spatial asymmetries which may have certain consequences observable at high energy accelerators, and in astrophysical and cosmological studies.Comment: 10 pages, 2 figures, Revtex4, to appear in Phys.Rev.D, misprints are correcte

    New bounds on neutrino magnetic moment and re-examination of plasma effect in neutrino spin light

    Get PDF
    Recent discussion on the possibility to obtain more stringent bounds on neutrino magnetic moment has stimulated new interest to possible effects induced by neutrino magnetic moment. In particular, in this note after a short review on neutrino magnetic moment we re-examine the effect of plasmon mass on neutrino spin light radiation in dense matter. We track the entry of the plasmon mass quantity in process characteristics and found out that the most substantial role it plays is the formation of the process threshold. It is shown that far from this point the plasmon mass can be omitted in all the corresponding physical quantities and one can rely on the results of massless photon spin light radiation theory in matter.Comment: to appear in Nuovo Cimento 35 C, No. 1, 2012 (based on the talk presented at the 25th Rencontres de Physique de la Vallee d'Aoste on "Results and Perspectives in Particle Physics", La Thuile, February 27 - March 5, 201

    Neutrino spin operator and dispersion in moving matter

    Full text link
    We found a spin integral of motion for neutrino, which propagates in moving and polarized matter. The operator obtained opens up the possibility of consistent classification of neutrino states in such a medium and, as a consequence, a systematic description of the related physical phenomena. Using the operator, we obtain a dispersion relation for neutrinos and consider its particular cases.Comment: 8 page

    Neutrino spin oscillations in gravitational fields

    Full text link
    We study neutrino spin oscillations in gravitational fields. The quasi-classical approach is used to describe the neutrino spin evolution. First we examine the case of a weak gravitational field. We obtain the effective Hamiltonian for the description of neutrino spin oscillations. We also receive the neutrino transition probability when a particle propagates in the gravitational field of a rotating massive object. Then we apply the general technique to the description of neutrino spin oscillations in the Schwarzschild metric. The neutrino spin evolution equation for the case of the neutrino motion in the vicinity of a black hole is obtained. The effective Hamiltonian and the transition probability are also derived. We examine the neutrino oscillations process on different circular orbits and analyze the frequencies of spin transitions. The validity of the quasi-classical approach is also considered.Comment: RevTeX4, 9 pages, 1 esp figure; article was revised, some misprints were corrected, 6 references added; accepted for publication in Int.J.Mod.Phys.

    Quantum treatment of neutrino in background matter

    Full text link
    Motivated by the need of elaboration of the quantum theory of the spin light of neutrino in matter (SLνSL\nu), we have studied in more detail the exact solutions of the Dirac equation for neutrinos moving in the background matter. These exact neutrino wavefunctions form a basis for a rather powerful method of investigation of different neutrino processes in matter, which is similar to the Furry representation of quantum electrodynamics in external fields. Within this method we also derive the corresponding Dirac equation for an electron moving in matter and consider the electromagnetic radiation ("spin light of electron in matter", SLeSLe) that can be emitted by the electron in this case.Comment: 10 pages, in: Proceedings of QFEXT'05 (The Seventh Workshop on Quantum Field Theory under the Influence of External Conditions, IEEC, CSIC and University of Barcelona, Barcelona, Catalonia, Spain, 5-9 September 2005.), ed. by Emilio Elizalde and Sergei Odintsov; published in Journal of Physics

    Bound-state beta-decay of a neutron in a strong magnetic field

    Full text link
    The beta-decay of a neutron into a bound (pe−)(pe^-) state and an antineutrino in the presence of a strong uniform magnetic field (B≳1013B \gtrsim 10^{13} G) is considered. The beta-decay process is treated within the framework of the standard model of weak interactions. A Bethe-Salpeter formalism is employed for description of the bound (pe−)(pe^-) system in a strong magnetic field. For the field strengths 101310^{13} G≲B≲1018 \lesssim B \lesssim10^{18} G the estimate for the ratio of the bound-state decay rate wbw_b and the usual (continuum-state) decay rate wcw_c is derived. It is found that in such strong magnetic fields wb/wc∼0.1−0.4w_b/w_c \sim 0.1-0.4. This is in contrast to the field-free case, where wb/wc≃4.2×10−6w_b/w_c \simeq 4.2 \times 10^{-6} [J. N. Bahcall, Phys. Rev. {\bf 124}, 495 (1961); L. L. Nemenov, Sov. J. Nucl. Phys. {\bf 15}, 582 (1972); X. Song, J. Phys. G: Nucl. Phys. {\bf 13}, 1023 (1987)]. The dependence of the ratio wb/wcw_b/w_c on the magnetic field strength BB exhibits a logarithmic-like behavior. The obtained results can be important for applications in astrophysics and cosmology.Comment: 22 pages (revtex4), 1 figure; v2: more detailed discussion on astrophysical applications in conclusion section, accepted for publication in Phys. Rev.
    • …
    corecore