1 research outputs found

    Polariton condensation and lasing in optical microcavities - the decoherence driven crossover

    Full text link
    We explore the behaviour of a system which consists of a photon mode dipole coupled to a medium of two-level oscillators in a microcavity in the presence of decoherence. We consider two types of decoherence processes which are analogous to magnetic and non-magnetic impurities in superconductors. We study different phases of this system as the decoherence strength and the excitation density is changed. For a low decoherence we obtain a polariton condensate with comparable excitonic and photonic parts at low densities and a BCS-like state with bigger photon component due to the fermionic phase space filling effect at high densities. In both cases there is a large gap in the density of states. As the decoherence is increased the gap is broadened and suppressed, resulting in a gapless condensate and finally a suppression of the coherence in a low density regime and a laser at high density limit. A crossover between these regimes is studied in a self-consistent way analogous to the Abrikosov and Gor'kov theory of gapless superconductivity.Comment: 17 pages, 8 figures, submitted to PR
    corecore