733 research outputs found
Electro-optically tunable microring resonators in lithium niobate
Optical microresonators have recently attracted a growing attention in the
photonics community. Their applications range from quantum electro-dynamics to
sensors and filtering devices for optical telecommunication systems, where they
are likely to become an essential building block. The integration of nonlinear
and electro-optical properties in the resonators represents a very stimulating
challenge, as it would incorporate new and more advanced functionality. Lithium
niobate is an excellent candidate material, being an established choice for
electro-optic and nonlinear optical applications. Here we report on the first
realization of optical microring resonators in submicrometric thin films of
lithium niobate. The high index contrast films are produced by an improved
crystal ion slicing and bonding technique using benzocyclobutene. The rings
have radius R=100 um and their transmission spectrum has been tuned using the
electro-optic effect. These results open new perspectives for the use of
lithium niobate in chip-scale integrated optical devices and nonlinear optical
microcavities.Comment: 15 pages, 8 figure
The Mare as a Model for Luteinized Unruptured Follicle Syndrome: Intrafollicular Endocrine Milieu.
Luteinized unruptured follicle (LUF) syndrome is a recurrent anovulatory dysfunction that affects up to 23% of women with normal menstrual cycles and up to 73% with endometriosis. Mechanisms underlying the development of LUF syndrome in mares were studied to provide a potential model for human anovulation. The effect of extended increase in circulating LH achieved by administration of recombinant equine LH (reLH) or a short surge of LH and decrease in progesterone induced by prostaglandin F2α (PGF2α) on LUF formation (Experiment 1), identification of an optimal dose of COX-2 inhibitor (flunixin meglumine, FM; to block the effect of prostaglandins) for inducing LUFs (Experiment 2), and evaluation of intrafollicular endocrine milieu in LUFs (Experiment 3) were investigated. In Experiment 1, mares were treated with reLH from Day 7 to Day 15 (Day 0=ovulation), PGF2α on Day 7, or in combination. In Experiment 2, FM at doses of 2.0 or 3.0 mg/kg every 12 h and human chorionic gonadotropin (hCG) (1500 IU) were administered after a follicle ≥32 mm was detected. In Experiment 3, FM at a dose of 2.0 mg/kg every 12 h plus hCG was used to induce LUFs and investigate the intrafollicular endocrine milieu. No LUFs were induced by reLH or PGF2α treatment; however, LUFs were induced in 100% of mares using FM. Intrafollicular PGF2α metabolite, PGF2α, and PGE2 were lower and the ratio of PGE2:PGF2α was higher in the induced LUF group. Higher levels of intrafollicular E2 and total primary sex steroids were observed in the induced LUF group along with a tendency for higher levels of GH, cortisol, and T; however, LH, PRL, VEGF-A, and NO did not differ between groups. In conclusion, this study reveals part of the intrafollicular endocrine milieu and the association of prostaglandins in LUF formation, and indicates that the mare might be an appropriate model for studying the poorly understood LUF syndrome
The Mare as a Model for Luteinized Unruptured Follicle Syndrome: Intrafollicular Endocrine Milieu.
Luteinized unruptured follicle (LUF) syndrome is a recurrent anovulatory dysfunction that affects up to 23% of women with normal menstrual cycles and up to 73% with endometriosis. Mechanisms underlying the development of LUF syndrome in mares were studied to provide a potential model for human anovulation. The effect of extended increase in circulating LH achieved by administration of recombinant equine LH (reLH) or a short surge of LH and decrease in progesterone induced by prostaglandin F2α (PGF2α) on LUF formation (Experiment 1), identification of an optimal dose of COX-2 inhibitor (flunixin meglumine, FM; to block the effect of prostaglandins) for inducing LUFs (Experiment 2), and evaluation of intrafollicular endocrine milieu in LUFs (Experiment 3) were investigated. In Experiment 1, mares were treated with reLH from Day 7 to Day 15 (Day 0=ovulation), PGF2α on Day 7, or in combination. In Experiment 2, FM at doses of 2.0 or 3.0 mg/kg every 12 h and human chorionic gonadotropin (hCG) (1500 IU) were administered after a follicle ≥32 mm was detected. In Experiment 3, FM at a dose of 2.0 mg/kg every 12 h plus hCG was used to induce LUFs and investigate the intrafollicular endocrine milieu. No LUFs were induced by reLH or PGF2α treatment; however, LUFs were induced in 100% of mares using FM. Intrafollicular PGF2α metabolite, PGF2α, and PGE2 were lower and the ratio of PGE2:PGF2α was higher in the induced LUF group. Higher levels of intrafollicular E2 and total primary sex steroids were observed in the induced LUF group along with a tendency for higher levels of GH, cortisol, and T; however, LH, PRL, VEGF-A, and NO did not differ between groups. In conclusion, this study reveals part of the intrafollicular endocrine milieu and the association of prostaglandins in LUF formation, and indicates that the mare might be an appropriate model for studying the poorly understood LUF syndrome
Induction of microRNAs, mir-155, mir-222, mir-424 and mir-503, promotes monocytic differentiation through combinatorial regulation
Acute myeloid leukemia (AML) involves a block in terminal differentiation of
the myeloid lineage and uncontrolled proliferation of a progenitor state. Using
phorbol myristate acetate (PMA), it is possible to overcome this block in THP-1
cells (an M5-AML containing the MLL-MLLT3 fusion), resulting in differentiation
to an adherent monocytic phenotype. As part of FANTOM4, we used microarrays to
identify 23 microRNAs that are regulated by PMA. We identify four PMA-induced
micro- RNAs (mir-155, mir-222, mir-424 and mir-503) that when overexpressed
cause cell-cycle arrest and partial differentiation and when used in
combination induce additional changes not seen by any individual microRNA. We
further characterize these prodifferentiative microRNAs and show that mir-155
and mir-222 induce G2 arrest and apoptosis, respectively. We find mir-424 and
mir-503 are derived from a polycistronic precursor mir-424-503 that is under
repression by the MLL-MLLT3 leukemogenic fusion. Both of these microRNAs
directly target cell-cycle regulators and induce G1 cell-cycle arrest when
overexpressed in THP-1. We also find that the pro-differentiative mir-424 and
mir-503 downregulate the anti-differentiative mir-9 by targeting a site in its
primary transcript. Our study highlights the combinatorial effects of multiple
microRNAs within cellular systems.Comment: 45 pages 5 figure
Recommended from our members
Pediatric Perioperative Stress Responses and Anesthesia
Summary Surgical stress responses cause an array of endocrinological, metabolic and immunological changes in patients. The landmark studies in the 1980s showed that adequate anesthesia dramatically improved the outcomes of pediatric surgical patients by attenuating stress hormonal responses, pointing out the harm of ‘inadequate’ anesthesia. Subsequent studies questioned the role of administering very high-dose anesthetics to further attenuate stress responses. Here we review the feature of surgical stress responses in pediatric patients including their difference from those in adult patients. Overall, pediatric patients show minimal or no resting energy expenditure change postoperatively. In adult patients, increased resting energy expenditure has been described. Pediatric patients demonstrated robust cortisol and catecholamine responses than adult patients. However, the duration of these surges is often short-lived. Systemic proinflammatory and anti-inflammatory cytokine levels have been measured. Pediatric patients showed less proinflammatory cytokine elevation, but had similar anti-antiinflamatory responses. We also review in detail the immunological changes in response to surgical stress. Based on our current knowledge, we attempted to understand the underlying mechanism how adequate anesthesia dramatically improved the outcome of patients. Although more work is needed to be done, understanding how pediatric patients respond to perioperative stress, and its mechanism and consequence will allow us to direct us into a better, perioperative management in this population
Radiation hardness studies of a 130 nm Silicon Germanium BiCMOS technology with a dedicated ASIC
We present the radiation hardness studies on the bipolar devices of the 130 nm 8WL Silicon Germanium (SiGe) BiCMOS technology from IBM. This technology has been proposed as one of the candidates for the Front-End (FE) readout chip of the upgraded Inner Detector (ID) and the Liquid Argon Calorimeter (LAr) of the ATLAS Upgrade experiment. After neutron irradiations, devices remain at acceptable performances at the maximum radiation levels expected in the Si tracker and LAr calorimeter
Development of Hydrophones for Detecting High-Energy Reactions in Water(III. Accelerator, Synchrotron Radiation, and Instrumentation)
Acoustic detectors were developed using a piezo ceramic compound PZT. A shape of the PZT detector was essential to obtain a high sensitivity. A detector of a spherically shaped shell structure, whose size was 50 mm in diameter and 2 mm thick, was fabricated. Its sensitivity was calibrated to be about 40 mV/Pa at 54 kHz. Using the hydrophone, acoustic signals generated by an electron-induced cascade shower in water were detected. Experimental results were compared with simulation data and confirmed a consistency in between
Midline fusion in the formation of the secondary palate anticipated by upregulation of keratin K5/6 and localized expression of vimentin mRNA in medial edge epithelium
Secondary palatal fusion is dependent on targeted removal of the epithelium between the palatal shelves. Aseptically delivered rat embryos 15 through 18 days post coitum (dpc) were probed with DIG-labeled antisense and sense ssDNA probes for spliced exon sequences flanking intron E of cytokeratins K5/6 and spliced exon sequences flanking intron F of vimentin. Cytokeratin K5/6 expression was upregulated in the medial edge epithelium (MEE) prior to rotation of the palatal shelves and in the vomerine epithelium in the region of fusion with the palate. K5/6 expression continued in the medial epithelial seam (MES) and in epithelial islands during breakdown of the MES. Vimentin expression was not detected in the MEE prior to rotation but was specifically upregulated in the MEE following rotation and prior to midline contact and continued in the MES and in epithelial cells identifiable during the breakdown of the MES. Initiation of vimentin upregulation in the MEE prior to contact of the palatal shelves was tested by serum-free organ culture of palates from embryos at 15.5 dpc with the shelves separated by a biocompatible membrane. Vimentin upregulation occurred in the epithelium specifically in the region of anticipated contact. These results are interpreted as indicating that i) cytokeratin K5/6 expression may play a critical role in the integration of the epithelial layers of the MES to ensure subsequent merging of the mesenchyme and ii) epithelial cells in the MEE are specifically 'primed' to upregulate expression of mesenchymal genes prior to integration into and breakdown of the MES.journal articleresearch support, non-u.s. gov't1999 Mayimporte
MicroRNAs in pulmonary arterial remodeling
Pulmonary arterial remodeling is a presently irreversible pathologic hallmark of pulmonary arterial hypertension (PAH). This complex disease involves pathogenic dysregulation of all cell types within the small pulmonary arteries contributing to vascular remodeling leading to intimal lesions, resulting in elevated pulmonary vascular resistance and right heart dysfunction. Mutations within the bone morphogenetic protein receptor 2 gene, leading to dysregulated proliferation of pulmonary artery smooth muscle cells, have been identified as being responsible for heritable PAH. Indeed, the disease is characterized by excessive cellular proliferation and resistance to apoptosis of smooth muscle and endothelial cells. Significant gene dysregulation at the transcriptional and signaling level has been identified. MicroRNAs are small non-coding RNA molecules that negatively regulate gene expression and have the ability to target numerous genes, therefore potentially controlling a host of gene regulatory and signaling pathways. The major role of miRNAs in pulmonary arterial remodeling is still relatively unknown although research data is emerging apace. Modulation of miRNAs represents a possible therapeutic target for altering the remodeling phenotype in the pulmonary vasculature. This review will focus on the role of miRNAs in regulating smooth muscle and endothelial cell phenotypes and their influence on pulmonary remodeling in the setting of PAH
- …