10 research outputs found

    The Metabolic Inhibition Model Which Predicts the Intestinal Absorbability and Metabolizability of Drug: Theory and Experiment

    Get PDF
    The intestinal absorption of analgesic peptides (leucine enkephalin and kyotorphin) and modified peptides in rat were studied. Although these peptides were not absorbed, the absorbability (absorption clearance) of these peptides were increased in the presence of peptidase inhibitors. In order to kinetically analyze these phenomena, we proposed the metabolic inhibition model, which incorporated the metabolic clearance (metabolizability) with the absorption clearance. Metabolic activity was determined with intestinal homogenates. The higher the metabolic clearance was, the lower was the absorption clearance. The relationships between the absorption clearance and the metabolic clearance of the experimental data as well as of the theoretical values were hyperbolic. This model predicted the maximum absorption clearances of cellobiose-coupled leucine enkephalin (0.654 ÎŒl/min/cm) and kyotorphin (0.247 ÎŒl/min/cm). Details of the experimental methods are described

    The bacterial SoxAX cytochromes

    No full text
    SoxAX cytochromes are heme-thiolate proteins that play a key role in bacterial thiosulfate oxidation, where they initiate the reaction cycle of a multi-enzyme complex by catalyzing the attachment of sulfur substrates such as thiosulfate to a conserved cysteine present in a carrier protein. SoxAX proteins have a wide phylogenetic distribution and form a family with at least three distinct types of SoxAX protein. The types of SoxAX cytochromes differ in terms of the number of heme groups present in the proteins (there are diheme and triheme versions) as well as in their subunit structure. While two of the SoxAX protein types are heterodimers, the third group contains an additional subunit, SoxK, that stabilizes the complex of the SoxA and SoxX proteins. Crystal structures are available for representatives of the two heterodimeric SoxAX protein types and both of these have shown that the cysteine ligand to the SoxA active site heme carries a modification to a cysteine persulfide that implicates this ligand in catalysis. EPR studies of SoxAX proteins have also revealed a high complexity of heme dependent signals associated with this active site heme; however, the exact mechanism of catalysis is still unclear at present, as is the exact number and types of redox centres involved in the reaction
    corecore