53,706 research outputs found

    Ultraluminous X-ray Sources forming in low metallicity natal environments

    Get PDF
    In the last few years multiwavelength observations have boosted our understanding of Ultraluminous X-ray Sources (ULXs). Yet, the most fundamental questions on ULXs still remain to be definitively answered: do they contain stellar or intermediate mass black holes? How do they form? We investigate the possibility that the black holes hosted in ULXs originate from massive (40-120 MM_\odot) stars in low metallicity natal environments. Such black holes have a typical mass in the range 3090M\sim 30-90 M_\odot and may account for the properties of bright (above 1040\sim 10^{40} erg s1^{-1}) ULXs. More than 105\sim 10^5 massive black holes might have been generated in this way in the metal poor Cartwheel galaxy during the last 10710^7 years and might power most of the ULXs observed in it. Support to our interpretation comes from NGC 1313 X-2, the first ULX with a tentative identification of the orbital period in the optical band, for which binary evolution calculations show that the system is most likely made by a massive donor dumping matter on a 50100M50-100 M_\odot black hole.Comment: 4 pages. To appear in the Proceedings of the Conference "X-Ray Astronomy 2009: Present Status, Multiwavelength Approach and Future Perspectives", Bologna, Italy, September 2009, Eds. A. Comastri, M. Cappi, L. Angelini, 2010 AIP (in press)

    K -> pi pi and a light scalar meson

    Full text link
    We explore the Delta-I= 1/2 rule and epsilon'/epsilon in K -> pi pi transitions using a Dyson-Schwinger equation model. Exploiting the feature that QCD penguin operators direct K^0_S transitions through 0^{++} intermediate states, we find an explanation of the enhancement of I=0 K -> pi pi transitions in the contribution of a light sigma-meson. This mechanism also affects epsilon'/epsilon.Comment: 7 pages, REVTE

    The Calculation of Vacuum Properties from the Global Color Symmetry Model

    Get PDF
    A modified method for calculating the non-perturbative quark vacuum condensates from the global color symmetry model is derived. Within this approach it is shown that the vacuum condensates are free of ultraviolet divergence which is different from previous studies. As a special, the two-quark condensate and the mixed quark-gluon condensate are calculated. A comparision with the results of the other nonperturbative QCD approaches is given.Comment: 17 page

    Herding cats: observing live coding in the wild

    Get PDF
    After a momentous decade of live coding activities, this paper seeks to explore the practice with the aim of situating it in the history of contemporary arts and music. The article introduces several key points of investigation in live coding research and discusses some examples of how live coding practitioners engage with these points in their system design and performances. In the light of the extremely diverse manifestations of live coding activities, the problem of defining the practice is discussed, and the question raised whether live coding will actually be necessary as an independent category

    New stability results for Einstein scalar gravity

    Full text link
    We consider asymptotically anti de Sitter gravity coupled to a scalar field with mass slightly above the Breitenlohner-Freedman bound. This theory admits a large class of consistent boundary conditions characterized by an arbitrary function WW. An important open question is to determine which WW admit stable ground states. It has previously been shown that the total energy is bounded from below if WW is bounded from below and the bulk scalar potential V(ϕ)V(\phi) admits a suitable superpotential. We extend this result and show that the energy remains bounded even in some cases where WW can become arbitrarily negative. As one application, this leads to the possibility that in gauge/gravity duality, one can add a double trace operator with negative coefficient to the dual field theory and still have a stable vacuum
    corecore