4,719 research outputs found
Temperature Dependence of Extended and Fractional SU(3) Monopole Currents
We examine in pure SU(3) the dependence of extended monopole current k and
cross-species extended monopole current k^{cross} on temperature t, monopole
size L, and fractional monopole charge 1/q. We find that features of both k and
k^{cross} are sensitive to t for a range of L and q. In particular, the
spatial-temporal asymmetry ratios of both k and k^{cross} are sensitive over a
range of L and q to the SU(3) deconfinement transition. The motivation for
studying cross, extended, and fractional monopoles in SU(3) is given.Comment: 15 pages (archiving final publication version; very minor revisions
Towards an Abelian Formulation of Lattice QCD Confinement
We probe for operators occurring in the APQCD(``abelian-projected QCD'')
action by evaluating abelian-projected -plaquette spectral densities in pure
gauge fixed to maximal abelian gauge. Couplings are
extracted from the spectral densities for each representation ,
plaquette. While APQCD is dominated by a resonance, we also find
evidence for weakly coupled plaquettes. Moreover, since even if , plaquettes must be
significant since APQCD is confining.Comment: 1+11 pages, fixed minor postscript erro
Magnetization in AIIIBV semiconductor heterostructures with the depletion layer of manganese
The magnetic moment and magnetization in GaAs/GaInAs/GaAs
heterostructures with Mn deluted in GaAs cover layers and with atomically
controlled Mn -layer thicknesses near GaInAs-quantum well (3 nm)
in temperature range T=(1.8-300)K in magnetic field up to 50 kOe have been
investigated. The mass magnetization all of the samples of
GaAs/GaInAs/GaAs with Mn increases with the increasing of the
magnetic field that pointed out on the presence of low-dimensional
ferromagnetism in the manganese depletion layer of GaAs based structures. It
has been estimated the manganese content threshold at which the ferromagnetic
ordering was found.Comment: 8 pages, 3 figure
Alternating-Spin Ladders
We investigate a two-leg spin ladder system composed of alternating-spin
chains with two-different kind of spins. The fixed point properties are
discussed by using spin-wave analysis and non-linear sigma model techniques.
The model contains various massive phases, reflecting the interplay between the
bond-alternation and the spin-alternation.Comment: 6 pages, revtex, to appear in PR
A Multiwavelength Analysis of the Strong Lensing Cluster RCS 022434-0002.5 at z=0.778
We present the results of two (101 ks total) Chandra observations of the
z=0.778 optically selected lensing cluster RCS022434-0002.5, along with weak
lensing and dynamical analyses of this object. An X-ray spectrum extracted
within R(2500) (362 h(70)^(-1) kpc) results in an integrated cluster
temperature of 5.1 (+0.9,-0.5) keV. The surface brightness profile of
RCS022434-0002.5 indicates the presence of a slight excess of emission in the
core. A hardness ratio image of this object reveals that this central emission
is primarily produced by soft X-rays. Further investigation yields a cluster
cooling time of 3.3 times 10^9 years, which is less than half of the age of the
universe at this redshift given the current LCDM cosmology. A weak lensing
analysis is performed using HST images, and our weak lensing mass estimate is
found to be in good agreement with the X-ray determined mass of the cluster.
Spectroscopic analysis reveals that RCS022434-0002.5 has a velocity dispersion
of 900 +/- 180 km/s, consistent with its X-ray temperature. The core gas mass
fraction of RCS022434-0002.5 is, however, found to be three times lower than
expected universal values. The radial distribution of X-ray point sources
within R(200) of this cluster peaks at ~0.7 R(200), possibly indicating that
the cluster potential is influencing AGN activity at that radius. Correlations
between X-ray and radio (VLA) point source positions are also examined.Comment: 32 pages, 9 figures. Accepted for publication in The Astrophysical
Journa
Galaxy Merger Candidates in High-Redshift Cluster Environments
We compile a sample of spectroscopically- and photometrically-selected
cluster galaxies from four high-redshift galaxy clusters ()
from the Spitzer Adaptation of the Red-Sequence Cluster Survey (SpARCS), and a
comparison field sample selected from the UKIDSS Deep Survey. Using
near-infrared imaging from the \textit{Hubble Space Telescope} we classify
potential mergers involving massive () cluster members by eye, based on morphological
properties such as tidal distortions, double nuclei, and projected near
neighbors within 20 kpc. With a catalogue of 23 spectroscopic and 32
photometric massive cluster members across the four clusters and 65
spectroscopic and 26 photometric comparable field galaxies, we find that after
taking into account contamination from interlopers, of
the cluster members are involved in potential mergers, compared to
of the field galaxies. We see no evidence of merger
enhancement in the central cluster environment with respect to the field,
suggesting that galaxy-galaxy merging is not a stronger source of galaxy
evolution in cluster environments compared to the field at these redshifts.Comment: Accepted by Ap
Nonlinear Optical Response Functions of Mott Insulators Based on Dynamical Mean Field Approximation
We investigate the nonlinear optical susceptibilities of Mott insulators with
the dynamical mean field approximation. The two-photon absorption (TPA) and the
third-harmonic generation (THG) spectra are calculated, and the classification
by the types of coupling to external fields shows different behavior from
conventional semiconductors. The direct transition terms are predominant both
in the TPA and THG spectra, and the importance of taking all types of
interaction with the external field into account is illustrated in connection
with the THG spectrum and dcKerr effect. The dependence of the TPA and THG
spectra on the Coulomb interaction indicate a scaling relation. We apply this
relation to the quantitative evaluation and obtain results comparable to those
of experiments.Comment: 14 pages, 12 figure
Signatures of Emerging Subsurface Structures in Acoustic Power Maps
We show that under certain conditions, subsurface structures in the solar
interior can alter the average acoustic power observed at the photosphere above
them. By using numerical simulations of wave propagation, we show that this
effect is large enough for it to be potentially used for detecting emerging
active regions before they appear on the surface. In our simulations,
simplified subsurface structures are modeled as regions with enhanced or
reduced acoustic wave speed. We investigate the dependence of the acoustic
power above a subsurface region on the sign, depth, and strength of the wave
speed perturbation. Observations from the Solar and Heliospheric
Observatory/Michelson Doppler Imager (SOHO/MDI) prior and during the emergence
of NOAA active region 10488 are used to test the use of acoustic power as a
potential precursor of magnetic flux emergence.Comment: 7 pages, 5 figures, accepted for publication in Solar Physics on 21
March 201
The EXPLORE Project I: A Deep Search for Transiting Extrasolar Planets
(Abridged) We discuss the design considerations of the EXPLORE (EXtra-solar
PLanet Occultation REsearch) project, a series of transiting planet searches
using 4-m-class telescopes to continuously monitor a single field of stars in
the Galactic Plane in each ~2 week observing campaign. We discuss the general
factors which determine the efficiency and the number of planets found by a
transit search, including time sampling strategy and field selection. The
primary goal is to select the most promising planet candidates for radial
velocity follow-up observations. We show that with very high photometric
precision light curves that have frequent time sampling and at least two
detected transits, it is possible to uniquely solve for the main parameters of
the eclipsing system (including planet radius) based on several important
assumptions about the central star. Together with a measured spectral type for
the star, this unique solution for orbital parameters provides a powerful
method for ruling out most contaminants to transiting planet candidates. For
the EXPLORE project, radial velocity follow-up observations for companion mass
determination of the best candidates are done on 8-m-class telescopes within
two or three months of the photometric campaigns. This same-season follow-up is
made possible by the use of efficient pipelines to produce high quality light
curves within weeks of the observations. We conclude by presenting early
results from our first search, EXPLORE I, in which we reached <1% rms
photometric precision (measured over a full night) on ~37,000 stars to I <=
18.2.Comment: accepted by ApJ. Main points unchanged but more thorough discussion
of some issues. 36 pages, including 14 figure
- …