509 research outputs found
Covariant Formulation of the Invariant Measure for the Mixmaster Dynamics
We provide a Hamiltonian analysis of the Mixmaster Universe dynamics showing
the covariant nature of its chaotic behavior with respect to any choice of time
variable. We construct the appropriate invariant measure for the system (which
relies on the existence of an ``energy-like'' constant of motion) without
fixing the time gauge, i.e. the corresponding lapse function. The key point in
our analysis consists of introducing generic Misner-Chitr\'e-like variables
containing an arbitrary function, whose specification allows one to set up the
same dynamical scheme in any time gauge.Comment: 11 pages, 1 figur
Universe from vacuum in loop-string cosmology
In this paper we study the description of the Universe based on the low
energy superstring theory modified by the Loop Quantum Gravity effects.This
approach was proposed by De Risi et al. in the Phys. Rev. D {\bf 76} (2007)
103531. We show that in the contrast with the string motivated pre-Big Bang
scenario, the cosmological realisation of the -duality transformation is not
necessary to avoid an initial singularity. In the model considered the universe
starts its evolution in the vacuum phase at time . In this phase
the scale factor , energy density and coupling of the
interactions . After this stage the universe evolves to the
non-singular hot Big Bang phase . Then the
standard classical universe emerges. During the whole evolution the scale
factor increases monotonically. We solve this model analytically. We also
propose and solve numerically the model with an additional dilaton potential in
which the universe starts the evolution from the asymptotically free vacuum
phase and then evolves non-singularly to the emerging dark energy
dominated phase with the saturated coupling constant .Comment: JHEP3 LaTeX class, 19 pages, 9 figures, v2: added some comments and
references, v3: new numerical result added, new figure
Cosmic acceleration from modified gravity with Palatini formalism
We study new FRW type cosmological models of modified gravity treated on the
background of Palatini approach. These models are generalization of Einstein
gravity by the presence of a scalar field non-minimally coupled to the
curvature. The models employ Starobinsky's term in the Lagrangian and dust
matter. Therefore, as a by-product, an exhausted cosmological analysis of
general relativity amended by quadratic term is presented. We investigate
dynamics of our models, confront them with the currently available
astrophysical data as well as against LCDM model. We have used the dynamical
system methods in order to investigate dynamics of the models. It reveals the
presence of a final sudden singularity. Fitting free parameters we have
demonstrated by statistical analysis that this class of models is in a very
good agreement with the data (including CMB measurements) as well as with the
standard LCDM model predictions. One has to use statefinder diagnostic in order
to discriminate among them. Therefore Bayesian methods of model selection have
been employed in order to indicate preferred model. Only in the light of CMB
data the concordance model remains invincible.Comment: 32 pages, jcappub style, 28 figures, final improved version, to be
published in JCA
Noether symmetry approach in phantom quintessence cosmology
In the framework of phantom quintessence cosmology, we use the Noether
Symmetry Approach to obtain general exact solutions for the cosmological
equations. This result is achieved by the quintessential (phantom) potential
determined by the existence of the symmetry itself. A comparison between the
theoretical model and observations is worked out. In particular, we use type Ia
supernovae and large scale structure parameters determined from the 2-degree
Field Galaxy Redshift Survey (2dFGRS)and from the Wide part of the VIMOS-VLT
Deep Survey (VVDS). It turns out that the model is compatible with the
presently available observational data. Moreover we extend the approach to
include radiation. We show that it is compatible with data derived from
recombination and it seems that quintessence do not affect nucleosynthesis
results.Comment: 26 pages, 13 figure
Billiard Representation for Multidimensional Cosmology with Intersecting p-branes near the Singularity
Multidimensional model describing the cosmological evolution of n Einstein
spaces in the theory with l scalar fields and forms is considered. When
electro-magnetic composite p-brane ansatz is adopted, and certain restrictions
on the parameters of the model are imposed, the dynamics of the model near the
singularity is reduced to a billiard on the (N-1)-dimensional Lobachevsky
space, N = n+l. The geometrical criterion for the finiteness of the billiard
volume and its compactness is used. This criterion reduces the problem to the
problem of illumination of (N-2)-dimensional sphere by point-like sources. Some
examples with billiards of finite volume and hence oscillating behaviour near
the singularity are considered. Among them examples with square and triangle
2-dimensional billiards (e.g. that of the Bianchi-IX model) and a 4-dimensional
billiard in ``truncated'' D = 11 supergravity model (without the Chern-Simons
term) are considered. It is shown that the inclusion of the Chern-Simons term
destroys the confining of a billiard.Comment: 27 pages Latex, 3 figs., submit. to Class. Quantum Gra
Integrated functions among multiple starch synthases determine both amylopectin chain length and branch linkage location in Arabidopsis leaf starch
This study assessed the impact on starch metabolism in Arabidopsis leaves of simultaneously eliminating multiple soluble starch synthases (SS) from among SS1, SS2, and SS3. Double mutant ss1- ss2- or ss1- ss3- lines were generated using confirmed null mutations. These were compared to the wild type, each single mutant, and ss1- ss2- ss3- triple mutant lines grown in standardized environments. Double mutant plants developed similarly to the wild type, although they accumulated less leaf starch in both short-day and long-day diurnal cycles. Despite the reduced levels in the double mutants, lines containing only SS2 and SS4, or SS3 and SS4, are able to produce substantial amounts of starch granules. In both double mutants the residual starch was structurally modified including higher ratios of amylose:amylopectin, altered glucan chain length distribution within amylopectin, abnormal granule morphology, and altered placement of α(1→6) branch linkages relative to the reducing end of each linear chain. The data demonstrate that SS activity affects not only chain elongation but also the net result of branch placement accomplished by the balanced activities of starch branching enzymes and starch debranching enzymes. SS3 was shown partially to overlap in function with SS1 for the generation of short glucan chains within amylopectin. Compensatory functions that, in some instances, allow continued residual starch production in the absence of specific SS classes were identified, probaby accomplished by the granule bound starch synthase GBSS1.ANR Génoplante GPLA0611GEuropean Union-FEDER, Région Nord Pas de Calais ARCir PlantTEQ5National Science Foundation DBI-0209789Comisión Interministerial de Ciencia y Tecnología BIO2009-07040Junta de Andalucía P09-CVI-470
- …