305 research outputs found

    The Darboux-Backlund transformation for the static 2-dimensional continuum Heisenberg chain

    Full text link
    We construct the Darboux-Backlund transformation for the sigma model describing static configurations of the 2-dimensional classical continuum Heisenberg chain. The transformation is characterized by a non-trivial normalization matrix depending on the background solution. In order to obtain the transformation we use a new, more general, spectral problem.Comment: 12 page

    On analytic descriptions of two-dimensional surfaces associated with the CP^(N-1) sigma model

    Full text link
    We study analytic descriptions of conformal immersions of the Riemann sphere S^2 into the CP^(N-1) sigma model. In particular, an explicit expression for two-dimensional (2-D) surfaces, obtained from the generalized Weierstrass formula, is given. It is also demonstrated that these surfaces coincide with the ones obtained from the Sym-Tafel formula. These two approaches correspond to parametrizations of one and the same surface in R^(N^2-1).Comment: 6 page

    Links between different analytic descriptions of constant mean curvature surfaces

    Full text link
    Transformations between different analytic descriptions of constant mean curvature (CMC) surfaces are established. In particular, it is demonstrated that the system ∂ψ1=(∣ψ1∣2+∣ψ2∣2)ψ2∂ˉψ2=−(∣ψ1∣2+∣ψ2∣2)ψ1 \begin{split} &\partial \psi_{1} = (|\psi_{1}|^{2} + |\psi_{2}|^{2}) \psi_{2} \\ &\bar{\partial} \psi_{2} =- (|\psi_{1}|^{2} + |\psi_{2}|^{2}) \psi_{1} \end{split} descriptive of CMC surfaces within the framework of the generalized Weierstrass representation, decouples into a direct sum of the elliptic Sh-Gordon and Laplace equations. Connections of this system with the sigma model equations are established. It is pointed out, that the instanton solutions correspond to different Weierstrass parametrizations of the standard sphere S2⊂E3S^{2} \subset E^{3}

    Pseudospherical surfaces on time scales: a geometric definition and the spectral approach

    Full text link
    We define and discuss the notion of pseudospherical surfaces in asymptotic coordinates on time scales. Thus we extend well known notions of discrete pseudospherical surfaces and smooth pseudosperical surfaces on more exotic domains (e.g, the Cantor set). In particular, we present a new expression for the discrete Gaussian curvature which turns out to be valid for asymptotic nets on any time scale. We show that asymptotic Chebyshev nets on an arbitrary time scale have constant negative Gaussian curvature. We present also the quaternion-valued spectral problem (the Lax pair) and the Darboux-Backlund transformation for pseudospherical surfaces (in asymptotic coordinates) on arbitrary time scales.Comment: 20 page

    The geometric sense of R. Sasaki connection

    Full text link
    For the Riemannian manifold MnM^{n} two special connections on the sum of the tangent bundle TMnTM^{n} and the trivial one-dimensional bundle are constructed. These connections are flat if and only if the space MnM^{n} has a constant sectional curvature ±1\pm 1. The geometric explanation of this property is given. This construction gives a coordinate free many-dimensional generalization of the connection from the paper: R. Sasaki 1979 Soliton equations and pseudospherical surfaces, Nuclear Phys., {\bf 154 B}, pp. 343-357. It is shown that these connections are in close relation with the imbedding of MnM^{n} into Euclidean or pseudoeuclidean (n+1)(n+1)-dimension spaces.Comment: 7 pages, the key reference to the paper of Min-Oo is included in the second versio

    Finite-gap Solutions of the Vortex Filament Equation: Isoperiodic Deformations

    Full text link
    We study the topology of quasiperiodic solutions of the vortex filament equation in a neighborhood of multiply covered circles. We construct these solutions by means of a sequence of isoperiodic deformations, at each step of which a real double point is "unpinched" to produce a new pair of branch points and therefore a solution of higher genus. We prove that every step in this process corresponds to a cabling operation on the previous curve, and we provide a labelling scheme that matches the deformation data with the knot type of the resulting filament.Comment: 33 pages, 5 figures; submitted to Journal of Nonlinear Scienc

    Generalized isothermic lattices

    Full text link
    We study multidimensional quadrilateral lattices satisfying simultaneously two integrable constraints: a quadratic constraint and the projective Moutard constraint. When the lattice is two dimensional and the quadric under consideration is the Moebius sphere one obtains, after the stereographic projection, the discrete isothermic surfaces defined by Bobenko and Pinkall by an algebraic constraint imposed on the (complex) cross-ratio of the circular lattice. We derive the analogous condition for our generalized isthermic lattices using Steiner's projective structure of conics and we present basic geometric constructions which encode integrability of the lattice. In particular, we introduce the Darboux transformation of the generalized isothermic lattice and we derive the corresponding Bianchi permutability principle. Finally, we study two dimensional generalized isothermic lattices, in particular geometry of their initial boundary value problem.Comment: 19 pages, 11 figures; v2. some typos corrected; v3. new references added, higlighted similarities and differences with recent papers on the subjec

    Scalar second order evolution equations possessing an irreducible sl2_2-valued zero curvature representation

    Full text link
    We find all scalar second order evolution equations possessing an sl2_2-valued zero curvature representation that is not reducible to a proper subalgebra of sl2_2. None of these zero-curvature representations admits a parameter.Comment: 10 pages, requires nath.st

    A geometric interpretation of the spectral parameter for surfaces of constant mean curvature

    Full text link
    Considering the kinematics of the moving frame associated with a constant mean curvature surface immersed in S^3 we derive a linear problem with the spectral parameter corresponding to elliptic sinh-Gordon equation. The spectral parameter is related to the radius R of the sphere S^3. The application of the Sym formula to this linear problem yields constant mean curvature surfaces in E^3. Independently, we show that the Sym formula itself can be derived by an appropriate limiting process R -> infinity.Comment: 12 page

    Classification of integrable Weingarten surfaces possessing an sl(2)-valued zero curvature representation

    Full text link
    In this paper we classify Weingarten surfaces integrable in the sense of soliton theory. The criterion is that the associated Gauss equation possesses an sl(2)-valued zero curvature representation with a nonremovable parameter. Under certain restrictions on the jet order, the answer is given by a third order ordinary differential equation to govern the functional dependence of the principal curvatures. Employing the scaling and translation (offsetting) symmetry, we give a general solution of the governing equation in terms of elliptic integrals. We show that the instances when the elliptic integrals degenerate to elementary functions were known to nineteenth century geometers. Finally, we characterize the associated normal congruences
    • …
    corecore