42 research outputs found
Immunotoxicity of polystyrene nanoplastics in different hemocyte subpopulations of Mytilus galloprovincialis
Plastic represents 60-80% of litter in the ocean. Degradation of plastic to small fragments leads to the formation of microplastics (MPs <5mm) and nanoplastics (NPs <1 mu m). One of the most widely used and representative plastics found in the ocean is polystyrene (PS). Among marine organisms, the immune system of bivalves is recognized as suitable to assess nanomaterial toxicity. Hemocyte subpopulations [R1 (large granular cells), R2 (small semi-granular cells) and R3 (small agranular or hyaline cells)] of Mytilus galloprovincialis are specialized in particular tasks and functions. The authors propose to examine the effects of different sizes (50 nm, 100 nm and 1 mu m) PS NPs on the different immune cells of mussels when they were exposed to (1 and 10mg.L-1) of PS NPs. The most noteworthy results found in this work are: (i) 1 mu m PS NPs provoked higher immunological responses with respect to 50 and 100nm PS NPs, possibly related to the higher stability in size and shape in hemolymph serum, (ii) the R1 subpopulation was the most affected with respect to R2 and R3 concerning immunological responses and (iii) an increase in the release of toxic radicals, apoptotic signals, tracking of lysosomes and a decrease in phagocytic activity was found in R1
Aquatic Ecotoxicity of Microplastics and Nanoplastics: Lessons Learned from Engineered Nanomaterials
Understanding How Microplastics Affect Marine Biota on the Cellular Level Is Important for Assessing Ecosystem Function: A Review
Plastic has become indispensable for human life. When plastic debris is discarded into waterways, these items can interact with organisms. Of particular concern are microscopic plastic particles (microplastics) which are subject to ingestion by several taxa. This review summarizes the results of cutting-edge research about the interactions between a range of aquatic species and microplastics, including effects on biota physiology and secondary ingestion. Uptake pathways via digestive or ventilatory systems are discussed, including (1) the physical penetration of microplastic particles into cellular structures, (2) leaching of chemical additives or adsorbed persistent organic pollutants (POPs), and (3) consequences of bacterial or viral microbiota contamination associated with microplastic ingestion. Following uptake, a number of individual-level effects have been observed, including reduction of feeding activities, reduced growth and reproduction through cellular modifications, and oxidative stress. Microplastic-associated effects on marine biota have become increasingly investigated with growing concerns regarding human health through trophic transfer. We argue that research on the cellular interactions with microplastics provide an understanding of their impact to the organisms’ fitness and, therefore, its ability to sustain their functional role in the ecosystem. The review summarizes information from 236 scientific publications. Of those, only 4.6% extrapolate their research of microplastic intake on individual species to the impact on ecosystem functioning. We emphasize the need for risk evaluation from organismal effects to an ecosystem level to effectively evaluate the effect of microplastic pollution on marine environments. Further studies are encouraged to investigate sublethal effects in the context of environmentally relevant microplastic pollution conditions
Sampling, isolating and identifying microplastics ingested by fish and invertebrates
Microplastic debris (<5 mm) is a prolific environmental pollutant, found worldwide in marine, freshwater and terrestrial ecosystems. Interactions between biota and microplastics are prevalent, and there is growing evidence that microplastics can incite significant health effects in exposed organisms. To date, the methods used to quantify such interactions have varied greatly between studies. Here, we critically review methods for sampling, isolating and identifying microplastics ingested by environmentally and laboratory exposed fish and invertebrates. We aim to draw attention to the strengths and weaknesses of the suite of published microplastic extraction and enumeration techniques. Firstly, we highlight the risk of microplastic losses and accumulation during biotic sampling and storage, and suggest protocols for mitigating contamination in the field and laboratory. We evaluate a suite of methods for extracting microplastics ingested by biota, including dissection, depuration, digestion and density separation. Lastly, we consider the applicability of visual identification and chemical analyses in categorising microplastics. We discuss the urgent need for the standardisation of protocols to promote consistency in data collection and analysis. Harmonized methods will allow for more accurate assessment of the impacts and risks microplastics pose to biota and increase comparability between studies
Regulation of a truncated isoform of AMP-activated protein kinase a (AMPKa) in response to hypoxia in the muscle of Pacific oyster Crassostrea gigas
AMP-activated protein kinase a (AMPKa) is a
key regulator of energy balance in many model species
during hypoxia. In a marine bivalve, the Pacific oyster
Crassostrea gigas, we analyzed the protein content of
adductor muscle in response to hypoxia during 6 h. In both
smooth and striated muscles, the amount of full-length
AMP-activated protein kinase a (AMPKa) remained
unchanged during hypoxia. However, hypoxia induced a
rapid and muscle-specific response concerning truncated
isoforms of AMPKa. In the smooth muscle, a truncated
isoform of AMPKa was increased from 1 to 6 h of
hypoxia, and was linked with accumulation of AKT kinase,
a key enzyme of the insulin signaling pathway which
controls intracellular glucose metabolism. In this muscle,
aerobic metabolism was maintained over the 6 h of
hypoxia, as mitochondrial citrate synthase activity
remained constant. In contrast, in striated muscle, hypoxia
did not induce any significant modification of neither
truncated AMPKa nor AKT protein content, and citrate
synthase activity was altered after 6 h of hypoxia. Together,
our results demonstrate that hypoxia response is
specific to muscle type in Pacific oyster, and that truncated
AMPKa and AKT proteins might be involved in maintaining
aerobic metabolism in smooth muscle. Such regulation
might occur in vivo during tidal intervals that cause
up to 6 h of hypoxia
Trophic transfer of copper decreases the condition index in Crassostrea gigas spat in concomitance with a change in the microalgal fatty acid profile and enhanced oyster energy demand
Due to new usages and sources, copper (Cu) concentrations are increasing in the Arcachon Basin, an important shellfish production area in France. In the present paper, the trophic transfer of Cu was studied between a microalga, Tetraselmis suecica, and Crassostrea gigas (Pacific oyster) spat. An experimental approach was developed to assess Cu exposure, transfer and toxicity on both phytoplankton and spat. Exposure of microalgal cultures to Cu for 7–8 days (3.1 ± 0.1, 15.7 ± 0.2 and 50.4 ± 1.0 μg Cu·L−1 for the control, Cu15 and Cu50 conditions, respectively) led to concentrations in microalgae (28.3 ± 0.9 and 110.7 ± 11.9 mg Cu·kg dry weight−1 for Cu15 and Cu50, respectively) close to those measured in the field. Despite Cu accumulation, the physiology of the microalgae remained poorly affected. Exposed cultures could only be discriminated from controls by a higher relative content in intracellular reactive oxygen species, and a lower relative content in lipids together with a reduced metabolic activity. By contrast, the fatty acid profile of microalgae was modified, with a particularly relevant lower content of the essential polyunsaturated fatty acid 22:6n-3 (docosahexaenoic acid [DHA]). Following 21 days of spat feeding with Cu15 and Cu50 microalgal cultures, trophic transfer of Cu was observed with a high initial Cu concentration in spat tissues. No effect was observed on oxidative stress endpoints. Cu exposure was responsible for a decrease in the spat condition index, an outcome that could be related to an insufficient DHA supply and extra energy demand as suggested by the overexpression of genes involved in energy metabolism, ATP synthesis and glycogen catabolism