78 research outputs found

    Multipath Transmission

    Get PDF
    Contains reports on two research projects

    Computational models to improve surveillance for cassava brown streak disease and minimize yield loss.

    Get PDF
    Cassava brown streak disease (CBSD) is a rapidly spreading viral disease that affects a major food security crop in sub-Saharan Africa. Currently, there are several proposed management interventions to minimize loss in infected fields. Field-scale data comparing the effectiveness of these interventions individually and in combination are limited and expensive to collect. Using a stochastic epidemiological model for the spread and management of CBSD in individual fields, we simulate the effectiveness of a range of management interventions. Specifically we compare the removal of diseased plants by roguing, preferential selection of planting material, deployment of virus-free 'clean seed' and pesticide on crop yield and disease status of individual fields with varying levels of whitefly density crops under low and high disease pressure. We examine management interventions for sustainable production of planting material in clean seed systems and how to improve survey protocols to identify the presence of CBSD in a field or quantify the within-field prevalence of CBSD. We also propose guidelines for practical, actionable recommendations for the deployment of management strategies in regions of sub-Saharan Africa under different disease and whitefly pressure

    Time-dependent infectivity and flexible latent and infectious periods in compartmental models of plant disease

    Get PDF
    Compartmental models have become the dominant theoretical paradigm in mechanistic modeling of plant disease and offer well-known advantages in terms of analytic tractability, ease of simulation, and extensibility. However, underlying assumptions of constant rates of infection and of exponentially distributed latent and infectious periods are difficult to justify. Although alternative approaches, including van der Plank's seminal discrete time model and models based on the integro-differential formulation of Kermack and McKendrick's model, have been suggested for plant disease and relax these unrealistic assumptions, they are challenging to implement and to analyze. Here, we propose an extension to the susceptible, exposed, infected, and removed (SEIR) compartmental model, splitting the latent and infection compartments and thereby allowing time-varying infection rates and more realistic distributions of latent and infectious periods to be represented. Although the model is, in fact, more general, we specifically target plant disease by demonstrating how it can represent both the van der Plank model and the most commonly used variant of the Kermack and McKendrick (K &amp; M) model (in which the infectivity response is delay Gamma distributed). We show how our reformulation retains the numeric and analytic tractability of SEIR models, and how it can be used to replicate earlier analyses of the van der Plank and K &amp; M models. Our reformulation has the advantage of using elementary mathematical techniques, making implementation easier for the nonspecialist. We show a practical implication of these results for disease control. By taking advantage of the easy extensibility characteristic of compartmental models, we also investigate the effects of including additional biological realism. As an example, we show how the more realistic infection responses we consider interact with host demography and lead to divergent invasion thresholds when compared with the “standard” SEIR model. An ever-increasing number of analyses purportedly extract more biologically realistic invasion thresholds by adding additional biological detail to the SEIR model framework; we contend that our results demonstrate that extending a model that has such a simplistic representation of the infection dynamics may not, in fact, lead to more accurate results. Therefore, we suggest that modelers should carefully consider the underlying assumptions of the simplest compartmental models in their future work. </jats:p

    Bed bug deterrence

    Get PDF
    A recent study in BMC Biology has determined that the immature stage of the bed bug (the nymph) signals its reproductive status to adult males using pheromones and thus avoids the trauma associated with copulation in this species. The success of this nymphal strategy of deterrence is instructive. Against the background of increasing problems with bed bugs, this research raises the question whether pheromones might be used to control them

    No Detectable Fertility Benefit from a Single Additional Mating in Wild Stalk-Eyed Flies

    Get PDF
    Background: Multiple mating by female insects is widespread, and the explanation(s) for repeated mating by females has been the subject of much discussion. Females may profit from mating multiply through direct material benefits that increase their own reproductive output, or indirect genetic benefits that increase offspring fitness. One particular direct benefit that has attracted significant attention is that of fertility assurance, as females often need to mate multiply to achieve high fertility. This hypothesis has never been tested in a wild insect population.Methodology/Principal Findings: Female Malaysian stalk-eyed flies (Teleopsis dalmanni) mate repeatedly during their lifetime, and have been shown to be sperm limited under both laboratory and field conditions. Here we ask whether receiving an additional mating alleviates sperm limitation in wild females. In our experiment one group of females received a single additional mating, while a control group received an interrupted, and therefore unsuccessful, mating. Females that received an additional mating did not lay more fertilised eggs in total, nor did they lay proportionately more fertilised eggs. Female fertility declined significantly through time, demonstrating that females were sperm limited. However, receipt of an additional mating did not significantly alter the rate of this decline.Conclusions/Significance: Our data suggest that the fertility consequences of a single additional mating were small. We discuss this effect (or lack thereof), and suggest that it is likely to be attributed to small ejaculate size, a high proportion of failed copulations, and the presence of X-linked meiotic drive in this species
    • …
    corecore