75 research outputs found
FORECASTOR -- I. Finding Optics Requirements and Exposure times for the Cosmological Advanced Survey Telescope for Optical and UV Research mission
The Cosmological Advanced Survey Telescope for Optical and ultraviolet
Research (CASTOR) is a proposed Canadian-led 1m-class space telescope that will
carry out ultraviolet and blue-optical wide-field imaging, spectroscopy, and
photometry. CASTOR will provide an essential bridge in the post-Hubble era,
preventing a protracted UV-optical gap in space astronomy and enabling an
enormous range of discovery opportunities from the solar system to the nature
of the Cosmos, in conjunction with the other great wide-field observatories of
the next decade (e.g., Euclid, Roman, Vera Rubin). FORECASTOR (Finding Optics
Requirements and Exposure times for CASTOR) will supply a coordinated suite of
mission-planning tools that will serve as the one-stop shop for proposal
preparation, data reduction, and analysis for the CASTOR mission. We present
the first of these tools: a pixel-based, user-friendly, extensible,
multi-mission exposure time calculator (ETC) built in Python, including a
modern browser-based graphical user interface that updates in real time. We
then provide several illustrative examples of FORECASTOR's use that advance the
design of planned legacy surveys for the CASTOR mission: a search for the most
massive white dwarfs in the Magellanic Clouds; a study of the frequency of
flaring activity in M stars, their distribution and impacts on habitability of
exoplanets; mapping the proper motions of faint stars in the Milky Way; wide
and deep galaxy surveys; and time-domain studies of active galactic nuclei.Comment: Updated references and acknowledgements to match published version.
24 pages, 16 figures, 3 tables, published in A
The Rossiter-McLaughlin effect in Exoplanet Research
The Rossiter-McLaughlin effect occurs during a planet's transit. It provides
the main means of measuring the sky-projected spin-orbit angle between a
planet's orbital plane, and its host star's equatorial plane. Observing the
Rossiter-McLaughlin effect is now a near routine procedure. It is an important
element in the orbital characterisation of transiting exoplanets. Measurements
of the spin-orbit angle have revealed a surprising diversity, far from the
placid, Kantian and Laplacian ideals, whereby planets form, and remain, on
orbital planes coincident with their star's equator. This chapter will review a
short history of the Rossiter-McLaughlin effect, how it is modelled, and will
summarise the current state of the field before describing other uses for a
spectroscopic transit, and alternative methods of measuring the spin-orbit
angle.Comment: Review to appear as a chapter in the "Handbook of Exoplanets", ed. H.
Deeg & J.A. Belmont
Gliese 12 b, a temperate Earth-sized planet at 12 parsecs discovered with TESS and CHEOPS
We report on the discovery of Gliese 12 b, the nearest transiting temperate, Earth-sized planet found to date. Gliese 12 is a bright (V = 12.6 mag, K = 7.8 mag) metal-poor M4V star only 12.162 ± 0.005 pc away from the Solar system with one of the lowest stellar activity levels known for M-dwarfs. A planet candidate was detected by TESS based on only 3 transits in sectors 42, 43, and 57, with an ambiguity in the orbital period due to observational gaps. We performed follow-up transit observations with CHEOPS and ground-based photometry with MINERVA-Australis, SPECULOOS, and Purple Mountain Observatory, as well as further TESS observations in sector 70. We statistically validate Gliese 12 b as a planet with an orbital period of 12.76144 ± 0.00006 d and a radius of 1.0 ± 0.1 Râ, resulting in an equilibrium temperature of âŒ315 K. Gliese 12 b has excellent future prospects for precise mass measurement, which may inform how planetary internal structure is affected by the stellar compositional environment. Gliese 12 b also represents one of the best targets to study whether Earth-like planets orbiting cool stars can retain their atmospheres, a crucial step to advance our understanding of habitability on Earth and across the galaxy
Gliese 12 b, a temperate Earth-sized planet at 12 parsecs discovered with TESS and CHEOPS
We report on the discovery of Gliese 12 b, the nearest transiting temperate, Earth-sized planet found to date. Gliese 12 is a bright (V = 12.6 mag, K = 7.8 mag) metal-poor M4V star only 12.162 ± 0.005 pc away from the Solar system with one of the lowest stellar activity levels known for M-dwarfs. A planet candidate was detected by TESS based on only 3 transits in sectors 42, 43, and 57, with an ambiguity in the orbital period due to observational gaps. We performed follow-up transit observations with CHEOPS and ground-based photometry with MINERVA-Australis, SPECULOOS, and Purple Mountain Observatory, as well as further TESS observations in sector 70. We statistically validate Gliese 12 b as a planet with an orbital period of 12.76144 ± 0.00006 d and a radius of 1.0 ± 0.1 Râ, resulting in an equilibrium temperature of âŒ315 K. Gliese 12 b has excellent future prospects for precise mass measurement, which may inform how planetary internal structure is affected by the stellar compositional environment. Gliese 12 b also represents one of the best targets to study whether Earth-like planets orbiting cool stars can retain their atmospheres, a crucial step to advance our understanding of habitability on Earth and across the galaxy
New Mass and Radius Constraints on the LHS 1140 Planets -- LHS 1140 b is Either a Temperate Mini-Neptune or a Water World
The two-planet transiting system LHS 1140 has been extensively observed since
its discovery in 2017, notably with , HST, TESS, and ESPRESSO, placing
strong constraints on the parameters of the M4.5 host star and its small
temperate exoplanets, LHS 1140 b and c. Here, we reanalyse the ESPRESSO
observations of LHS 1140 with the novel line-by-line framework designed to
fully exploit the radial velocity content of a stellar spectrum while being
resilient to outlier measurements. The improved radial velocities, combined
with updated stellar parameters, consolidate our knowledge on the mass of LHS
1140 b (5.600.19 M) and LHS 1140 c (1.910.06 M)
with unprecedented precision of 3%. Transits from , HST, and TESS are
jointly analysed for the first time, allowing us to refine the planetary radii
of b (1.7300.025 R) and c (1.2720.026 R).
Stellar abundance measurements of refractory elements (Fe, Mg and Si) obtained
with NIRPS are used to constrain the internal structure of LHS 1140 b. This
planet is unlikely to be a rocky super-Earth as previously reported, but rather
a mini-Neptune with a 0.1% H/He envelope by mass or a water world with a
water-mass fraction between 9 and 19% depending on the atmospheric composition
and relative abundance of Fe and Mg. While the mini-Neptune case would not be
habitable, a water-abundant LHS 1140 b potentially has habitable surface
conditions according to 3D global climate models, suggesting liquid water at
the substellar point for atmospheres with relatively low CO concentration,
from Earth-like to a few bars.Comment: 31 pages, 18 figures, accepted for publication in ApJ
TOI-836: A Super-Earth And Mini-Neptune Transiting A Nearby K-Dwarf
We present the discovery of two exoplanets transiting TOI-836 (TIC 440887364) using data from TESS Sector 11 and Sector 38. TOI-836 is a bright (T = 8.5âmag), high proper motion (âŒ200âmasâyrâ»Âč), low metallicity ([Fe/H]ââ0.28) K-dwarf with a mass of 0.68 ± 0.05 Mâ and a radius of 0.67 ± 0.01 Râ. We obtain photometric follow-up observations with a variety of facilities, and we use these data sets to determine that the inner planet, TOI-836 b, is a 1.70 ± 0.07 Râ super-Earth in a 3.82-d orbit, placing it directly within the so-called âradius valleyâ. The outer planet, TOI-836âc, is a 2.59 ± 0.09 Râ mini-Neptune in an 8.60-d orbit. Radial velocity measurements reveal that TOI-836 b has a mass of 4.5 ± 0.9 Mâ, while TOI-836 c has a mass of 9.6 ± 2.6 Mâ. Photometric observations show Transit Timing Variations (TTVs) on the order of 20 min for TOI-836 c, although there are no detectable TTVs for TOI-836 b. The TTVs of planet TOI-836 c may be caused by an undetected exterior planet
TOI-836 : a super-Earth and mini-Neptune transiting a nearby K-dwarf
Funding: TGW, ACC, and KH acknowledge support from STFC consolidated grant numbers ST/R000824/1 and ST/V000861/1, and UKSA grant ST/R003203/1.We present the discovery of two exoplanets transiting TOI-836 (TIC 440887364) using data from TESS Sector 11 and Sector 38. TOI-836 is a bright (T = 8.5 mag), high proper motion (âŒ200 mas yrâ1), low metallicity ([Fe/H]ââ0.28) K-dwarf with a mass of 0.68 ± 0.05 Mâ and a radius of 0.67 ± 0.01 Râ. We obtain photometric follow-up observations with a variety of facilities, and we use these data-sets to determine that the inner planet, TOI-836 b, is a 1.70 ± 0.07 Râ super-Earth in a 3.82 day orbit, placing it directly within the so-called âradius valleyâ. The outer planet, TOI-836 c, is a 2.59 ± 0.09 Râ mini-Neptune in an 8.60 day orbit. Radial velocity measurements reveal that TOI-836 b has a mass of 4.5 ± 0.9 Mâ, while TOI-836 c has a mass of 9.6 ± 2.6 Mâ. Photometric observations show Transit Timing Variations (TTVs) on the order of 20 minutes for TOI-836 c, although there are no detectable TTVs for TOI-836 b. The TTVs of planet TOI-836 c may be caused by an undetected exterior planet.Publisher PDFPeer reviewe
TOI-836: A super-Earth and mini-Neptune transiting a nearby K-dwarf
We present the discovery of two exoplanets transiting TOI-836 (TIC 440887364)
using data from TESS Sector 11 and Sector 38. TOI-836 is a bright (
mag), high proper motion ( mas yr), low metallicity
([Fe/H]) K-dwarf with a mass of M and a
radius of R. We obtain photometric follow-up
observations with a variety of facilities, and we use these data-sets to
determine that the inner planet, TOI-836 b, is a R
super-Earth in a 3.82 day orbit, placing it directly within the so-called
'radius valley'. The outer planet, TOI-836 c, is a R
mini-Neptune in an 8.60 day orbit. Radial velocity measurements reveal that
TOI-836 b has a mass of M , while TOI-836 c has a mass
of M. Photometric observations show Transit Timing
Variations (TTVs) on the order of 20 minutes for TOI-836 c, although there are
no detectable TTVs for TOI-836 b. The TTVs of planet TOI-836 c may be caused by
an undetected exterior planet
A pair of Sub-Neptunes transiting the bright K-dwarf TOI-1064 characterised with CHEOPS
Funding: TGW, ACC, and KH acknowledge support from STFC consolidated grant numbers ST/R000824/1 and ST/V000861/1, and UKSA grant ST/R003203/1.We report the discovery and characterization of a pair of sub-Neptunes transiting the bright K-dwarf TOI-1064 (TIC 79748331), initially detected in the Transiting Exoplanet Survey Satellite (TESS) photometry. To characterize the system, we performed and retrieved the CHaracterising ExOPlanets Satellite (CHEOPS), TESS, and ground-based photometry, the High Accuracy Radial velocity Planet Searcher (HARPS) high-resolution spectroscopy, and Gemini speckle imaging. We characterize the host star and determine Teff,â=4734±67Kâ , Râ=0.726±0.007Rââ , and Mâ=0.748±0.032Mââ . We present a novel detrending method based on point spread function shape-change modelling and demonstrate its suitability to correct flux variations in CHEOPS data. We confirm the planetary nature of both bodies and find that TOI-1064 b has an orbital period of Pb = 6.44387 ± 0.00003 d, a radius of Rb = 2.59 ± 0.04 Râ, and a mass of Mb=13.5+1.7â1.8 Mâ, whilst TOI-1064 c has an orbital period of Pc=12.22657+0.00005â0.00004 d, a radius of Rc = 2.65 ± 0.04 Râ, and a 3Ï upper mass limit of 8.5 Mâ. From the high-precision photometry we obtain radius uncertainties of âŒ1.6 per cent, allowing us to conduct internal structure and atmospheric escape modelling. TOI-1064 b is one of the densest, well-characterized sub-Neptunes, with a tenuous atmosphere that can be explained by the loss of a primordial envelope following migration through the protoplanetary disc. It is likely that TOI-1064 c has an extended atmosphere due to the tentative low density, however further radial velocities are needed to confirm this scenario and the similar radii, different masses nature of this system. The high-precision data and modelling of TOI-1064 b are important for planets in this region of massâradius space, and it allow us to identify a trend in bulk densityâstellar metallicity for massive sub-Neptunes that may hint at the formation of this population of planets.Publisher PDFPeer reviewe
- âŠ