4 research outputs found

    Solar Magnetic Polarity Effect on Neutron Monitor Count Rates: Comparing Latitude Surveys and Antarctic Stations

    Full text link
    The Galactic cosmic ray spectrum manifests pronounced variations over the 11-year sunspot cycle and more subtle variations over the 22-year solar magnetic cycle. An important tool to study these variations is repeated latitude surveys with neutron monitors (NMs) onboard icebreakers in conjunction with land-based references. We revisit 13 annual latitude surveys from 1994 to 2007 using reference data from the Mawson NM instead of McMurdo NM (which closed in 2017). We then consider two more latitude surveys (2018 and 2019) with a monitor similar to the 3NM64 in the previous surveys but without lead rings around the central tube, a so-called ``semi-leaded neutron monitor.'' The new surveys extend the linear relationship among data taken at different cutoff rigidity ranges. They also confirm the ``crossover'' measured near solar minima during epochs of opposite solar magnetic polarity and the absence of a crossover for epochs having the same solar magnetic polarity.Comment: Accepted for publication in Astrophys.

    Magnetic Field Line Random Walk and Solar Energetic Particle Path Lengths: Stochastic Theory and PSP/ISoIS Observation

    Full text link
    Context:In 2020 May-June, six solar energetic ion events were observed by the Parker Solar Probe/ISoIS instrument suite at 0.35 AU from the Sun. From standard velocity-dispersion analysis, the apparent ion path length is 0.625 AU at the onset of each event. Aims:We develop a formalism for estimating the path length of random-walking magnetic field lines, to explain why the apparent ion pathlength at event onset greatly exceeds the radial distance from the Sun for these events. Methods:We developed analytical estimates of the average increase in pathlength of random-walking magnetic field lines, relative to the unperturbed mean field. Monte Carlo simulations of fieldline and particle trajectories in a model of solar wind turbulence are used to validate the formalism and study the path lengths of particle guiding-center and full-orbital trajectories. The formalism is implemented in a global solar wind model, and results are compared with ion pathlengths inferred from ISoIS observations. Results:Both a simple estimate and a rigorous theoretical formulation are obtained for fieldlines' pathlength increase as a function of pathlength along the large-scale field. From simulated fieldline and particle trajectories, we find that particle guiding centers can have pathlengths somewhat shorter than the average fieldline pathlength, while particle orbits can have substantially larger pathlengths due to their gyromotion with a nonzero effective pitch angle. Conclusions:The long apparent path length during these solar energetic ion events can be explained by 1) a magnetic field line path length increase due to the field line random walk, and 2) particle transport about the guiding center with a nonzero effective pitch angle. Our formalism for computing the magnetic field line path length, accounting for turbulent fluctuations, may be useful for application to solar particle transport in general

    Integrated Science Investigation of the Sun (ISIS): Design of the Energetic Particle Investigation

    No full text
    corecore