195 research outputs found

    Coherent neutrino radiation in supernovae at two loops

    Get PDF
    We develop a neutrino transport theory, in terms of the real-time non-equilibrium Green's functions, which is applicable to physical conditions arbitrary far from thermal equilibrium. We compute the coherent neutrino radiation in cores of supernovae by evaluating the two-particle-two-hole (2p-2h) polarization function with dressed propagators. The propagator dressing is carried out in the particle-particle channel to all orders in the interaction. We show that at two loops there are two distinct sources of coherence effects in the bremsstrahlung. One is the generically off-shell intermediate state propagation, which leads to the Landau-Pomeranchuk-Migdal type suppression of radiation. We extend previous perturbative results, obtained in the leading order in quasiparticle width, by deriving the exact non-perturbative expression. A new contribution due to off-shell finial/initial baryon states is treated in the leading order in the quasiparticle width. The latter contribution corresponds to processes of higher order than second order in the virial expansion in the number of quasiparticles. At 2p-2h level, the time component of the polarization tensor for the vector transitions vanishes identically in the soft neutrino limit. Vector current thereby is conserved. The contraction of the neutral axial vector current with tensor interaction among the baryons leads to a non-vanishing contribution to the bremsstrahlung rate. These rates are evaluated numerically for finite temperature pure neutron matter at and above the nuclear saturation density.Comment: 26 pages, 5 figures, uses Revte

    Color-magnetic flux tubes in quark matter cores of neutron stars

    Full text link
    We argue that if color-superconducting quark matter exists in the core of a neutron star, it may contain a high density of flux tubes, carrying flux that is mostly color-magnetic, with a small admixture of ordinary magnetic flux. We focus on the two-flavor color-superconducting ("2SC") phase, and assume that the flux tubes are energetically stable, although this has not yet been demonstrated. The density of flux tubes depends on the nature of the transition to the color-superconducting phase, and could be within an order of magnitude of the density of magnetic flux tubes that would be found if the core were superconducting nuclear matter. We calculate the cross-section for Aharonov-Bohm scattering of gapless fermions off the flux tubes, and the associated collision time and frictional force on a moving flux tube. We discuss the other forces on the flux tube, and find that if we take in to account only the forces that arise within the 2SC core region then the timescale for expulsion of the color flux tubes from the 2SC core is of order 10^10 years.Comment: 28 pages, LaTeX, 1 figure, 2 appendices; added discussion of energetic stability of flux tube

    A Novel Mechanism for Type-I Superconductivity in Neutron Stars

    Full text link
    We suggest a mechanism that may resolve a conflict raised by Link between the precession of a neutron star and the standard picture in which its core is composed of a mixture of a neutron superfluid and a type-II proton superconductor. We will show that if there is a persistent, non-dissipating current running along the magnetic flux tubes, the force between magnetic flux tubes may be attractive, resulting in a type-I, rather than a type-II, superconductor. If this is the case, the conflict between the observed precession and the canonical estimation of the Landau-Ginzburg parameter (which suggests type II behaviour) will be automatically resolved. Such a current arises in some condensed matter systems and may also appear in QCD dense matter as a consequence of quantum anomalies. We calculate the interaction between two vortices carrying a current j and find a constraint on the magnitude of j where a superconductor is always type-I, even when the cannonical Landau-Ginzburg parameter indicates type-II behaviour. If this condition is met, the magnetic field is expelled from the superconducting regions of the neutron star leading to the formation of the intermediate state where alternating domains of superconducting matter and normal matter coexist. We further argue that even when the induced current is small the vortex Abrikosov lattice will nevertheless be destroyed due to the helical instability studied previously in many condensed matter systems. This would also resolve the apparent contradiction with the precession of the neutron stars. We also discuss some instances where anomalous induced current may play a crucial role, such as the neutron star kicks, pulsar glitches and the toroidal magnetic field.Comment: 10 pages, Additional arguments are given supporting the idea that the Abrikosov lattice will be destroyed in regions where longitudinal currents are induce
    • …
    corecore