12,957 research outputs found

    On The Origin of Super-Hot Electrons from Intense Laser Interactions with Solid Targets having Moderate Scale Length Preformed Plasmas

    Full text link
    We use PIC modeling to identify the acceleration mechanism responsible for the observed generation of super-hot electrons in ultra-intense laser-plasma interactions with solid targets with pre-formed plasma. We identify several features of direct laser acceleration (DLA) that drive the generation of super-hot electrons. We find that, in this regime, electrons that become super-hot are primarily injected by a looping mechanism that we call loop-injected direct acceleration (LIDA)

    On statistically stationary homogeneous shear turbulence

    Full text link
    A statistically stationary turbulence with a mean shear gradient is realized in a flow driven by suitable body forces. The flow domain is periodic in downstream and spanwise directions and bounded by stress free surfaces in the normal direction. Except for small layers near the surfaces the flow is homogeneous. The fluctuations in turbulent energy are less violent than in the simulations using remeshing, but the anisotropy on small scales as measured by the skewness of derivatives is similar and decays weakly with increasing Reynolds number.Comment: 4 pages, 5 figures (Figs. 3 and 4 as external JPG-Files

    Relativistic corrections to the electromagnetic polarizabilities of compound systems

    Get PDF
    The low-energy amplitude of Compton scattering on the bound state of two charged particles of arbitrary masses, charges and spins is calculated. A case in which the bound state exists due to electromagnetic interaction (QED) is considered. The term, proportional to ω2\omega^2, is obtained taking into account the first relativistic correction. It is shown that the complete result for this correction differs essentially from the commonly used term Δα\Delta\alpha, proportional to the r.m.s. charge radius of the system. We propose that the same situation can take place in the more complicated case of hadrons.Comment: 19 pages, LaTe

    Sub-Kolmogorov-Scale Fluctuations in Fluid Turbulence

    Full text link
    We relate the intermittent fluctuations of velocity gradients in turbulence to a whole range of local dissipation scales generalizing the picture of a single mean dissipation length. The statistical distribution of these local dissipation scales as a function of Reynolds number is determined in numerical simulations of forced homogeneous isotropic turbulence with a spectral resolution never applied before which exceeds the standard one by at least a factor of eight. The core of the scale distribution agrees well with a theoretical prediction. Increasing Reynolds number causes the generation of ever finer local dissipation scales. This is in line with a less steep decay of the large-wavenumber energy spectra in the dissipation range. The energy spectrum for the highest accessible Taylor microscale Reynolds number R_lambda=107 does not show a bottleneck.Comment: 8 pages, 5 figures (Figs. 1 and 3 in reduced quality

    Moving to Extremal Graph Parameters

    Full text link
    Which graphs, in the class of all graphs with given numbers n and m of edges and vertices respectively, minimizes or maximizes the value of some graph parameter? In this paper we develop a technique which provides answers for several different parameters: the numbers of edges in the line graph, acyclic orientations, cliques, and forests. (We minimize the first two and maximize the third and fourth.) Our technique involves two moves on the class of graphs. A compression move converts any graph to a form we call fully compressed: the fully compressed graphs are split graphs in which the neighbourhoods of points in the independent set are nested. A second consolidation move takes each fully compressed graph to one particular graph which we call H(n,m). We show monotonicity of the parameters listed for these moves in many cases, which enables us to obtain our results fairly simply. The paper concludes with some open problems and future directions

    Quantum data processing and error correction

    Get PDF
    This paper investigates properties of noisy quantum information channels. We define a new quantity called {\em coherent information} which measures the amount of quantum information conveyed in the noisy channel. This quantity can never be increased by quantum information processing, and it yields a simple necessary and sufficient condition for the existence of perfect quantum error correction.Comment: LaTeX, 20 page

    Enhancing Bremsstrahlung Production From Ultraintense Laser-Solid Interactions With Front Surface Structures

    Full text link
    We report the results of a combined study of particle-in-cell and Monte Carlo modeling that investigates the production of Bremsstrahlung radiation produced when an ultraintense laser interacts with a tower-structured target. These targets are found to significantly narrow the electron angular distribution as well as produce significantly higher energies. These features combine to create a significant enhancement in directionality and energy of the Bremstrahlung radiation produced by a high-Z converter target. These studies employ short-pulse, high intensity laser pulses, and indicate that novel target design has potential to greatly enhance the yield and narrow the directionality of high energy electrons and γ\gamma-rays. We find that the peak γ\gamma-ray brightness for this source is 6.0×\times1019^{19} s−1mm−2mrad−2{\rm s^{-1}mm^{-2}mrad^{-2}} at 10MeV and 1.4×\times1019^{19} s−1mm−2mrad−2{\rm s^{-1}mm^{-2}mrad^{-2}} at 100MeV (0.1%\% bandwidth).Comment: arXiv admin note: text overlap with arXiv:1310.328
    • …
    corecore