63 research outputs found

    mRNA-Expression of ERα, ERβ, and PR in Clonal Stem Cell Cultures Obtained from Human Endometrial Biopsies

    Get PDF
    Background. Proliferation and differentiation of the endometrium are regulated by estrogen and progesterone. The enormous regenerative capacity of the endometrium is thought to be based on the activity of adult stem cells. However, information on endocrine regulatory mechanisms in human endometrial stem cells is scarce. In the present study, we investigated the expression of ERα, ERβ, and PR in clonal cultures of human endometrial stem cells derived from transcervical biopsies. Methods. Endometrial tissue of 11 patients was obtained by transcervical biopsy. Stromal cell suspensions were plated at clonal density and incubated for 15 days. Expression of ERα, ERβ and PR was determined by qPCR prior to and after one cloning round, and normalized to 18 S rRNA expression. Results. Expression of ERα and ERβ was downregulated by 64% and 89%, respectively (P = 0.002 and P < 0.001). In contrast, PR was not significantly downregulated, due to a more heterogenous expression pattern. Conclusions. Culture of human endometrial stroma cells results in a downregulation of ERα and ERβ, while expression of PR remained unchanged in our patient collective. These results support the hypothesis that stem cells may not be subject to direct stimulation by sex steroids, but rather by paracrine mechanisms within the stem cell niche

    Immunohistochemical detection of macrophage migration inhibitory factor in fetal and adult bovine epididymis: Release by the apocrine secretion mode?

    Get PDF
    Originally defined as a lymphokine inhibiting the random migration of macrophages, the macrophage migration inhibitory factor (MIF) is an important mediator of the host response to infection. Beyond its function as a classical cytokine, MIF is currently portrayed as a multifunctional protein with growth-regulating properties present in organ systems beyond immune cells. In previous studies, we detected substantial amounts of MIF in the rat epididymis and epididymal spermatozoa, where it appears to play a role during post-testicular sperm maturation and the acquisition of fertilization ability. To explore its presence in other species not yet examined in this respect, we extended the range of studies to the bull. Using a polyclonal antibody raised against MIF purified from bovine eye lenses, we detected MIF in the epithelium of the adult bovine epididymis with the basal cells representing a prominently stained cell type. A distinct accumulation of MIF at the apical cell pole of the epithelial cells and in membranous vesicles localized in the lumen of the epididynnal duct was obvious. In the fetal bovine epididymis, we also detected MIF in the epithelium, whereas MIF accumulation was evident at the apical cell surface and in apical protrusions. By immuno-electron microscopy of the adult bovine epididymis, we localized MIF in apical protrusions of the epithelial cells and in luminal membrane-bound vesicles that were found in close proximity to sperm cells. Although the precise origin of the MIF-containing vesicles remains to be delineated, our morphological observations support the hypothesis that they become detached from the apical surface of the epididymal epithelial cells. Additionally, an association of MIF with the outer dense fibers of luminal spermatozoa was demonstrated. Data obtained in this study suggest MIF release by an apocrine secretion mode in the bovine epididymis. Furthermore, MIF localized in the basal cells of the epithelium and in the connective tissue could be responsible for regulating the migration of macrophages in order to avoid contact of immune cells with spermatozoa that carry a wide range of potent antigens. Copyright (c) 2006 S. Karger AG, Basel

    Practical recommendations for fertility preservation in women by the FertiPROTEKT network. Part I: Indications for fertility preservation.

    Get PDF
    PURPOSE Most guidelines about fertility preservation are predominantly focused on scientific evidence, but are less practically orientated. Therefore, practically oriented recommendations are needed to support the clinician in daily practice. METHODS A selective literature search was performed based on the clinical and scientific experience of the authors, focussing on the most relevant diseases and gynaecological cancers. This article (Part I) provides information on topics that are essential for the fertility preservation indication, such as disease prognosis, disease therapy and its associated risks to fertility, recommending disease-specific fertility preservation measures. Part II specifically focusses on fertility preservation techniques. RESULTS In breast cancer patients, fertility preservation such as ovarian tissue and oocyte cryopreservation is especially recommended in low-stage cancer and in women < 35 years of age. In Hodgkin's lymphoma, the indication is mainly based on the chemotherapy regime as some therapies have very low, others very high gonadotoxicity. In borderline ovarian tumours, preservation of fertility usually is achieved through fertility sparing surgery, ovarian stimulation may also be considered. In cervical cancer, endometrial cancer, rheumatic diseases and other malignancies such as Ewing sarcoma, colorectal carcinoma, non-Hodgkin lymphoma, leukaemia etc., several other factors must be considered to enable an individual, stage-dependent decision. CONCLUSION The decision for or against fertility preservation depends on the prognosis, the risks to fertility and individual factors such as prospective family planning

    Bone Marrow-Derived Cells from Male Donors Do Not Contribute to the Endometrial Side Population of the Recipient

    Get PDF
    Accumulated evidence demonstrates the existence of bone marrow-derived cells origin in the endometria of women undergoing bone marrow transplantation (BMT). In these reports, cells of a bone marrow (BM) origin are able to differentiate into endometrial cells, although their contribution to endometrial regeneration is not yet clear. We have previously demonstrated the functional relevance of side population (SP) cells as the endogenous source of somatic stem cells (SSC) in the human endometrium. The present work aims to understand the presence and contribution of bone marrow-derived cells to the endometrium and the endometrial SP population of women who received BMT from male donors. Five female recipients with spontaneous or induced menstruations were selected and their endometrium was examined for the contribution of XY donor-derived cells using fluorescent in situ hybridization (FISH), telomapping and SP method investigation. We confirm the presence of XY donor-derived cells in the recipient endometrium ranging from 1.7% to 2.62%. We also identify 0.45–0.85% of the donor-derived cells in the epithelial compartment displaying CD9 marker, and 1.0–1.83% of the Vimentin-positive XY donor-derived cells in the stromal compartment. Although the percentage of endometrial SP cells decreased, possibly being due to chemotherapy applied to these patients, they were not formed by XY donor-derived cells, donor BM cells were not associated with the stem cell (SC) niches assessed by telomapping technique, and engraftment percentages were very low with no correlation between time from transplant and engraftment efficiency, suggesting random terminal differentiation. In conclusion, XY donor-derived cells of a BM origin may be considered a limited exogenous source of transdifferentiated endometrial cells rather than a cyclic source of BM donor-derived stem cells

    Estrogen- and Progesterone (P4)-Mediated Epigenetic Modifications of Endometrial Stromal Cells (EnSCs) and/or Mesenchymal Stem/Stromal Cells (MSCs) in the Etiopathogenesis of Endometriosis

    Get PDF
    Endometriosis is a common chronic inflammatory condition in which endometrial tissue appears outside the uterine cavity. Because ectopic endometriosis cells express both estrogen and progesterone (P4) receptors, they grow and undergo cyclic proliferation and breakdown similar to the endometrium. This debilitating gynecological disease affects up to 15% of reproductive aged women. Despite many years of research, the etiopathogenesis of endometrial lesions remains unclear. Retrograde transport of the viable menstrual endometrial cells with retained ability for attachment within the pelvic cavity, proliferation, differentiation and subsequent invasion into the surrounding tissue constitutes the rationale for widely accepted implantation theory. Accordingly, the most abundant cells in the endometrium are endometrial stromal cells (EnSCs). These cells constitute a particular population with clonogenic activity that resembles properties of mesenchymal stem/stromal cells (MSCs). Thus, a significant role of stem cell-based dysfunction in formation of the initial endometrial lesions is suspected. There is increasing evidence that the role of epigenetic mechanisms and processes in endometriosis have been underestimated. The importance of excess estrogen exposure and P4 resistance in epigenetic homeostasis failure in the endometrial/endometriotic tissue are crucial. Epigenetic alterations regarding transcription factors of estrogen and P4 signaling pathways in MSCs are robust in endometriotic tissue. Thus, perspectives for the future may include MSCs and EnSCs as the targets of epigenetic therapies in the prevention and treatment of endometriosis. Here, we reviewed the current known changes in the epigenetic background of EnSCs and MSCs due to estrogen/P4 imbalances in the context of etiopathogenesis of endometriosis

    RANDOM WALK TREATMENT OF DUMB-BELL MOLECULES IN AN LTA ZEOLITE AND IN CHABAZITE

    No full text
    We analyse the mechanisms of self diffusion in zeolite-guest systems which show a non-monotonic temperature dependence of the self diffusion coefficient D: ethane in a cation-free LTA zeolite [1] and chlorine in silicious chabazite. In these systems D is influenced by jump rates for crossing energetic barriers as well as for crossing entropic barriers [1]. The entropy-controlled jump rates were found to decrease with increasing temperature. Employing random walk descriptions, simple analytical formulas are derived which relate the self diffusion coefficient of the guest molecules with the jump rates for crossing the different barriers. The simple ansatz we use can be transfered to other zeolite-guest systems

    mRNA-Expression of ERα, ERβ, and PR in Clonal Stem Cell Cultures Obtained from Human Endometrial Biopsies

    No full text
    Academic Editor: George Yip Background. Proliferation and differentiation of the endometrium are regulated by estrogen and progesterone. The enormous regenerative capacity of the endometrium is thought to be based on the activity of adult stem cells. However, information on endocrine regulatory mechanisms in human endometrial stem cells is scarce. In the present study, we investigated the expression of ERα, ERβ, and PR in clonal cultures of human endometrial stem cells derived from transcervical biopsies. Methods. Endometrial tissue of 11 patients was obtained by transcervical biopsy. Stromal cell suspensions were plated at clonal density and incubated for 15 days. Expression of ERα, ERβ and PR was determined by qPCR prior to and after one cloning round, and normalized to 18 S rRNA expression. Results. Expression of ERα and ERβ was downregulated by 64% and 89%, respectively (P = 0.002 and P &lt; 0.001). In contrast, PR was not significantly downregulated, due to a more heterogenous expression pattern. Conclusions. Culture of human endometrial stroma cells results in a downregulation of ERα and ERβ, while expression of PR remained unchanged in our patient collective. These results support the hypothesis that stem cells may not be subject to direct stimulation by sex steroids, but rather by paracrine mechanisms within the stem cell niche

    Rotational motion of pentane in the flat γ-cages of zeolite KFI

    No full text
    The orientation distribution and confined rotational motion of n-pentane in the oblate ¿ cages of zeolite KFI is computed by use of MD simulation. Pentane is preferably oriented with its end-to-end vector in the x and y direction perpendicular to the C4 symmetry axis of the cage. For comparison with a previous NMR study (Zorine et al.; J. Phys. Chem. B 2004, 108, 5600), the orientational autocorrelation function (OACF) of the C1C2C3 bi-sector is obtained from the simulations between 125 and 450 K, and decomposed into three exponential components. The slowest component follows the Arrhenius law with an activation energy of 13 kJ mol-1 and corresponds well to the effective rotation correlation times obtained from NMR relaxation above 200 K. MD trajectory analysis suggests that this component reflects gauche-trans conformation changes within the cage. According to our present findings, rotation of trans-trans pentane about the cage symmetry axis, which was previously proposed as the source for NMR relaxation, is actually too fast. Based on the OACF analysis, the non-Arrhenius behavior observed in the mentioned NMR study is now explained by a simultaneous increase of the correlation time and relative amplitude of the slowest OACF component versus inverse temperature
    corecore