100 research outputs found

    A local field emission study of partially aligned carbon-nanotubes by AFM probe

    Full text link
    We report on the application of Atomic Force Microscopy (AFM) for studying the Field Emission (FE) properties of a dense array of long and vertically quasi-aligned multi-walled carbon nanotubes grown by catalytic Chemical Vapor Deposition on a silicon substrate. The use of nanometric probes enables local field emission measurements allowing investigation of effects non detectable with a conventional parallel plate setup, where the emission current is averaged on a large sample area. The micrometric inter-electrode distance let achieve high electric fields with a modest voltage source. Those features allowed us to characterize field emission for macroscopic electric fields up to 250 V/μ\mum and attain current densities larger than 105^5 A/cm2^2. FE behaviour is analyzed in the framework of the Fowler-Nordheim theory. A field enhancement factor γ\gamma \approx 40-50 and a turn-on field EturnonE_{turn-on} \sim15 V/μ\mum at an inter-electrode distance of 1 μ\mum are estimated. Current saturation observed at high voltages in the I-V characteristics is explained in terms of a series resistance of the order of MΩ\Omega. Additional effects as electrical conditioning, CNT degradation, response to laser irradiation and time stability are investigated and discussed

    Local Tunneling Study of Three-Dimensional Order Parameter in the π\pi-band of Al-doped MgB2_2 Single Crystals

    Full text link
    We have performed local tunneling spectroscopy on high quality Mg1x_{1-x}Alx_xB2_2 single crystals by means of Variable Temperature Scanning Tunneling Spectroscopy (STS) in magnetic field up to 3 Tesla. Single gap conductance spectra due to c-axis tunneling were extensively measured, probing different amplitudes of the three-dimensional Δπ\Delta_\pi as a function of Al content. Temperature and magnetic field dependences of the conductance spectra were studied in S-I-N configuration: the effect of the doping resulted in a monotonous reduction of the locally measured TCT_C down to 24K for x=0.2. On the other hand, we have found that the gap amplitude shows a maximum value Δπ=2.3\Delta_\pi= 2.3 meV for x=0.1, while the Δπ/TC\Delta_\pi / T_C ratio increases monotonously with doping. The locally measured upper critical field was found to be strongly related to the gap amplitude, showing the maximum value Hc23TH_{c2}\simeq3T for x=0.1 substituted samples. For this Al concentration the data revealed some spatial inhomogeneity in the distribution of Δπ\Delta_\pi on nanometer scale.Comment: 4 pages, 3 figure

    Doping nature of native defects in 1T-TiSe2

    Get PDF
    The transition metal dichalcogenide 1T-TiSe2 is a quasi two-dimensional layered material with a charge density wave (CDW) transition temperature of TCDW 200 K. Self-doping effects for crystals grown at different temperatures introduce structural defects, modify the temperature dependent resistivity and strongly perturbate the CDW phase. Here we study the structural and doping nature of such native defects combining scanning tunneling microscopy/spectroscopy and ab initio calculations. The dominant native single atom dopants we identify in our single crystals are intercalated Ti atoms, Se vacancies and Se substitutions by residual iodine and oxygen.Comment: 5 pages, 3 figure

    STM microscopy of the CDW in 1T-TiSe2 in the presence of single atom defects

    Get PDF
    We present a detailed low temperature scanning tunneling microscopy study of the commensurate charge density wave (CDW) in 1TT-TiSe2_2 in the presence of single atom defects. We find no significant modification of the CDW lattice in single crystals with native defects concentrations where some bulk probes already measure substantial reductions in the CDW phase transition signature. Systematic analysis of STM micrographs combined with density functional theory modelling of atomic defect patterns indicate that the observed CDW modulation lies in the Se surface layer. The defect patterns clearly show there are no 2HH-polytype inclusions in the CDW phase, as previously found at room temperature [Titov A.N. et al, Phys. Sol. State 53, 1073 (2011). They further provide an alternative explanation for the chiral Friedel oscillations recently reported in this compound [J. Ishioka et al., Phys. Rev. B 84, 245125, (2011)].Comment: 5 pages, 4 figure

    Insight into the Charge Density Wave Gap from Contrast Inversion in Topographic STM Images

    Get PDF
    Charge density waves (CDWs) are understood in great detail in one dimension, but they remain largely enigmatic in two-dimensional systems. In particular, numerous aspects of the associated energy gap and the formation mechanism are not fully understood. Two long-standing riddles are the amplitude and position of the CDW gap with respect to the Fermi level ( E F ) and the frequent absence of CDW contrast inversion (CI) between opposite bias scanning tunneling microscopy (STM) images. Here, we find compelling evidence that these two issues are intimately related. Combining density functional theory and STM to analyze the CDW pattern and modulation amplitude in 1 T − TiSe 2 , we find that CI takes place at an unexpected negative sample bias because the CDW gap opens away from E F , deep inside the valence band. This bias becomes increasingly negative as the CDW gap shifts to higher binding energy with electron doping. This study shows the importance of CI in STM images to identify periodic modulations with a CDW and to gain valuable insight into the CDW gap, whose measurement is notoriously controversial

    Doping nature of native defects in 1T−TiSe₂

    Get PDF
    The transition-metal dichalcogenide 1T−TiSe₂is a quasi-two-dimensional layered material with a charge density wave (CDW) transition temperature of TCDW≈200  K. Self-doping effects for crystals grown at different temperatures introduce structural defects, modify the temperature-dependent resistivity, and strongly perturbate the CDW phase. Here, we study the structural and doping nature of such native defects combining scanning tunneling microscopy or spectroscopy and ab initio calculations. The dominant native single atom dopants we identify in our single crystals are intercalated Ti atoms, Se vacancies, and Se substitutions by residual iodine and oxygen

    Local probing of the field emission stability of vertically aligned multiwalled carbon nanotubes

    Full text link
    Metallic cantilever in high vacuum atomic force microscope has been used as anode for field emission experiments from densely packed vertically aligned multi-walled carbon nanotubes. The high spatial resolution provided by the scanning probe technique allowed precise setting of the tip-sample distance in the submicron region. The dimension of the probe (curvature radius below 50nm) allowed to measure current contribution from sample areas smaller than 1um^2. The study of long-term stability evidenced that on these small areas the field emission current remains stable (within 10% fluctuations) several hours (at least up to 72 hours) at current intensities between 10-5A and 10-8A. Improvement of the current stability has been observed after performing long-time Joule heating conditioning to completely remove possible adsorbates on the nanotubes.Comment: 15 pages, 7 figure

    Mixed order parameter symmetries in cuprate superconductors

    Full text link
    The recent observation of an inflection point in the temperature dependence of the in-plane magnetic field dependence (lambda_ab) is investigated within a two-band model with coupled order parameters of different symmetries. While the dominant order parameter has d-wave symmetry, the smaller one is of s-wave symmetry. Superconductivity is robust in the d-wave channel and induced via interband interactions in the s-wave subsystem.Comment: 10 pages, 4 figure
    corecore