1,861 research outputs found
Mathematical models of continuous flow electrophoresis: Electrophoresis technology
Two aspects of continuous flow electrophoresis were studied: (1) the structure of the flow field in continuous flow devices; and (2) the electrokinetic properties of suspended particles relevant to electrophoretic separations. Mathematical models were developed to describe flow structure and stability, with particular emphasis on effects due to buoyancy. To describe the fractionation of an arbitrary particulate sample by continuous flow electrophoresis, a general mathematical model was constructed. In this model, chamber dimensions, field strength, buffer composition, and other design variables can be altered at will to study their effects on resolution and throughput. All these mathematical models were implemented on a digital computer and the codes are available for general use. Experimental and theoretical work with particulate samples probed how particle mobility is related to buffer composition. It was found that ions on the surface of small particles are mobile, contrary to the widely accepted view. This influences particle mobility and suspension conductivity. A novel technique was used to measure the mobility of particles in concentrated suspensions
Fluid mechanics of continuous flow electrophoresis
The following aspects of continuous flow electrophoresis were studied: (1) flow and temperature fields; (2) hydrodynamic stability; (3) separation efficiency, and (4) characteristics of wide gap chambers (the SPAR apparatus). Simplified mathematical models were developed so as to furnish a basis for understanding the phenomena and comparison of different chambers and operating conditions. Studies of the hydrodynamic stability disclosed that a wide gap chamber may be particularly sensitive to axial temperature variations which could be due to uneven heating or cooling. The mathematical model of the separation process includes effects due to the axial velocity, electro-osmotic cross flow and electrophoretic migration, all including the effects of temperature dependent properties
Functional Attributes and Health Benefits of Novel Prebiotic Oligosaccharides Derived from Xylan, Arabinan, and Mannan
Prebiotic oligosaccharides are produced from many different sources, with substantial differences in chemical structure, bonds between subunits, and degree of polymerization. These structural differences can materially affect microbial utilization and the dose required for efficacy. Most prebiotic oligosaccharides are based on subunits comprised of 6-carbon sugars such as glucose/fructose and alpha bonds. Newer/novel oligosaccharides are derived from 5 carbon sugars and/or connected via beta bonds. Clinical trials with xylooligosaccharides, arabinoxylanoligosaccharides, and mannooligosaccharides have shown improvements in lipids, cholesterol, management of blood glucose, weight management, and laxation, at doses typically ranging from 1 to 4 g per day. Mannooligosaccharides are also showing promise for animal health, with the potential to reduce antibiotic use. These novel prebiotics are showing promise due to greater selectivity and their ability to deliver health benefits at a lower dose compared to conventional prebiotics
Flow and thermal effects in continuous flow electrophoresis
In continuous flow electrophoresis the axial flow structure changes from a fully developed rectilinear form to one characterized by meandering as power levels are increased. The origin of this meandering is postulated to lie in a hydrodynamic instability driven by axial (and possibly lateral) temperature gradients. Experiments done at MSFC show agreement with the theory
Electrohydrodynamic Flows in Electrochemical Systems
Recent studies have established a new class of assembly processes with colloidal suspensions. Particles are driven together to form large crystalline structures in both dc and ac fields. The current work centers on this new class of flows in ac fields. In the research carried out under the current award, it was established that: (i) Small colloidal particles crystallize near an electrode due to electrohydrodynamic flows induced by an sinusoidally varying applied potential. (ii) These flows originate due to disturbances in the electrode polarization layer arising from the presence of the particles. Inasmuch as the charge and the field strength both scale on the applied field, the flows are proportional to the square of the applied voltage. (iii) Suspensions of two different sorts of particles can be crystallized and will form well-ordered binary crystals. (iv) At high frequencies the EHD flows die out. Thus, with a homogeneous system the particles become widely spaced due to dipolar repulsion. With a binary suspension, however, the particles may become attractive due to dipolar attraction arising from differences in electrokinetic dipoles. Consequently binary crystals form at both high and low frequencies
The fluid mechanics of continuous flow electrophoresis
The overall objective is to establish theoretically and confirm experimentally the ultimate capabilities of continuous flow electrophoresis chambers operating in an environment essentially free of particle sedimentation and buoyancy. The efforts are devoted to: (1) studying the effects of particle concentration on sample conductivity and dielectric constant. The dielectric constant and conductivity were identified as playing crucial roles in the behavior of the sample and on the resolving power and throughput of continuous flow devices; and (2) improving the extant mathematical models to predict flow fields and particle trajectories in continuous flow electrophoresis. A dielectric spectrometer was designed and built to measure the complex dielectric constant of a colloidal dispersion as a function of frequency between 500 Hz and 200 kHz. The real part of the signal can be related to the sample's conductivity and the imaginary part to its dielectric constant. Measurements of the dielectric constants of several different dispersions disclosed that the dielectric constants of dilute systems of the sort encountered in particle electrophoresis are much larger than would be expected based on the extant theory. Experiments were carried out to show that, in many cases, this behavior is due to the presence of a filamentary structure of small hairs on the particle surface. A technique for producing electrokinetically ideal synthetic latex particles by heat treating was developed. Given the ubiquitous nature of hairy surfaces with both cells and synthetic particles, it was deemed necessary to develop a theory to explain their behavior. A theory for electrophoretic mobility of hairy particles was developed. Finally, the extant computer programs for predicting the structure of electro-osmotically driven flows were extended to encompass flow channels with variable wall mobilities
The roles of fluid motion and other transport phenomena in the morphology of materials
Two crystallization problems were studied: the growth of protein crystals, in particular the influence of colloidal forces and convection, and the influence of interface resistance on the growth of dendritic crystals. The protein study involved both experimental and theoretical work; the work of dendrites was entirely theoretical. In the study of protein crystallization, experiments were carried out where crystals were grown in the presence and absence of natural convection. No evidence was found that convection retards crystal growth. The theoretical study focused on the influence of colloidal forces (electrostatic and London-van der Waals) on the interaction between a protein molecule and a flat crystal surface. It was shown that the interaction is extremely sensitive to colloidal forces and that electrostatic interactions play a strong role in deciding whether or not a molecule will find a favorable site for adsorption. In the study of dendritic growth, the role of an interfacial resistance on the selection processes was examined. Using a computational scheme, it was found that the selected velocity is strongly dependent on the magnitude of the interfacial resistance to heat transfer. This is a possible explanation for discrepancies between the theoretical and experimental results on succinonitrile
Method for electrohydrodynamically assembling patterned colloidal structures
A method apparatus is provided for electrophoretically depositing particles onto an electrode, and electrohydrodynamically assembling the particles into crystalline structures. Specifically, the present method and apparatus creates a current flowing through a solution to cause identically charged electrophoretically deposited colloidal particles to attract each other over very large distances (<5 particle diameters) on the surface of electrodes to form two-dimensional colloidal crystals. The attractive force can be created with both DC and AC fields and can modulated by adjusting either the field strength or frequency of the current. Modulating this lateral attraction between the particles causes the reversible formation of two-dimensional fluid and crystalline colloidal states on the electrode surface. Further manipulation allows for the formation of two or three-dimensional colloidal crystals, as well as more complex designed structures. Once the required structures are formed, these three-dimension colloidal crystals can be permanently frozen or glued by controlled coagulation induced by to the applied field to form a stable crystalline structure
- …