794 research outputs found

    Plasma mechanisms of resonant terahertz detection in two-dimensional electron channel with split gates

    Get PDF
    We analyze the operation of a resonant detector of terahertz (THz) radiation based on a two-dimensional electron gas (2DEG) channel with split gates. The side gates are used for the excitation of plasma oscillations by incoming THz radiation and control of the resonant plasma frequencies. The central gate provides the potential barrier separating the source and drain portions of the 2DEG channel. Two possible mechanisms of the detection are considered: (1) modulation of the ac potential drop across the barrier and (2) heating of the 2DEG due to the resonant plasma-assisted absorption of THz radiation followed by an increase in thermionic dc current through the barrier. Using the device model we calculate the frequency and temperature dependences of the detector responsivity associated with both dynamic and heating (bolometric) mechanisms. It is shown that the dynamic mechanisms dominates at elevated temperatures, whereas the heating mechanism provides larger contribution at low temperatures, T=35-40 K.Comment: 7 pages, 4 figure

    Analytical device model for graphene bilayer field-effect transistors using weak nonlocality approximation

    Full text link
    We develop an analytical device model for graphene bilayer field-effect transistors (GBL-FETs) with the back and top gates. The model is based on the Boltzmann equation for the electron transport and the Poisson equation in the weak nonlocality approximation for the potential in the GBL-FET channel. The potential distributions in the GBL-FET channel are found analytically. The source-drain current in GBL-FETs and their transconductance are expressed in terms of the geometrical parameters and applied voltages by analytical formulas in the most important limiting cases. These formulas explicitly account for the short-gate effect and the effect of drain-induced barrier lowering. The parameters characterizing the strength of these effects are derived. It is shown that the GBL-FET transconductance exhibits a pronounced maximum as a function of the top-gate voltage swing. The interplay of the short-gate effect and the electron collisions results in a nonmonotonic dependence of the transconductance on the top-gate length.Comment: 12 pages, 7 figure

    Phase diagram of a frustrated mixed-spin ladder with diagonal exchange bonds

    Full text link
    Using exact numerical diagonalization and the conformal field theory approach, we study the effect of magnetic frustrations due to diagonal exchange bonds in a system of two coupled mixed-spin (1,1/2)(1,{1/2}) Heisenberg chains. It is established that relatively moderate frustrations are able to destroy the ferrimagnetic state and to stabilize the critical spin-liquid phase typical for half-integer-spin antiferromagnetic Heisenberg chains. Both phases are separated by a narrow but finite region occupied by a critical partially-polarized ferromagnetic phase.Comment: 5 PRB pages, 7 eps figures, to appear in Phys. Rev.

    Double-Exchange Model on Triangle Chain

    Full text link
    We study ground state properties of the double-exchange model on triangle chain in the classical limit on t2gt_{2g} spins. The ground state is determined by a competition among the kinetic energy of the ege_g electron, the antiferromagnetic exchange energy between the t2gt_{2g} spins, and frustration due to a geometric structure of the lattice. The phase diagrams are obtained numerically for two kinds of the models which differ only in the transfer integral being real or complex. The properties of the states are understood from the viewpoint of the spin-induced Peierls instability. The results suggest the existence of a chiral glass phase which is characterized by a local spin chirality and a continuous degeneracy.Comment: 6 pages, 4 figure
    corecore