20 research outputs found
Nuclear Magnetic Resonance Structure of the Human Polyoma JC Virus Agnoprotein
International audienceAgnoprotein is an important regulatory protein of the human polyoma JC virus (JCV) and plays critical roles during the viral replication cycle. It forms highly stable dimers and oligomers through its Leu/Ile/Phe-rich domain, which is important for the stability and function of the protein. We recently resolved the partial 3D structure of this protein by NMR using a synthetic peptide encompassing amino acids Thr17 to Gln52, where the Leu/Ile/Phe- rich region was found to adopt a major alpha-helix conformation spanning amino acids 23-39. Here, we report the resolution of the 3D structure of full-length JCV agnoprotein by NMR, which not only confirmed the existence of the previously reported major α-helix domain at the same position but also revealed the presence of an additional minor α-helix region spanning amino acid residues Leu6 to lys13. The remaining regions of the protein adopt an intrinsically unstructured conformation. J. Cell. Biochem. 118: 3268-3280, 2017. © 2017 Wiley Periodicals, Inc
Nuclear Magnetic Resonance Structure Revealed that the Human Polyomavirus JC Virus Agnoprotein Contains an -Helix Encompassing the Leu/Ile/Phe-Rich Domain
International audienceAgnoprotein is a small multifunctional regulatory protein required for sustaining the productive replication of JC virus (JCV). It is a mostly cytoplasmic protein localizing in the perinuclear area and forms highly stable dimers/oligomers through a Leu/Ile/Phe-rich domain. There have been no three-dimensional structural data available for agnoprotein due to difficulties associated with the dynamic conversion from monomers to oligomers. Here, we report the first nuclear magnetic resonance (NMR) structure of a synthetic agnoprotein peptide spanning amino acids Thr17 to Glu55 where Lys23 to Phe39 encompassing the Leu/Ile/Phe-rich domain forms an amphipathic α-helix. On the basis of these structural data, a number of Ala substitution mutations were made to investigate the role of the α-helix in the structure and function of agnoprotein. Single L29A and L36A mutations exhibited a significant negative effect on both protein stability and viral replication, whereas the L32A mutation did not. In addition, the L29A mutant displayed a highly nuclear localization pattern, in contrast to the pattern for the wild type (WT). Interestingly, a triple mutant, the L29A+L32A+L36A mutant, yielded no detectable agnoprotein expression, and the replication of this JCV mutant was significantly reduced, suggesting that Leu29 and Leu36 are located at the dimer interface, contributing to the structure and stability of agnoprotein. Two other single mutations, L33A and E34A, did not perturb agnoprotein stability as drastically as that observed with the L29A and L36A mutations, but they negatively affected viral replication, suggesting that the role of these residues is functional rather than structural. Thus, the agnoprotein dimerization domain can be targeted for the development of novel drugs active against JCV infection
Emerging From the Unknown: Structural and Functional Features of Agnoprotein of Polyomaviruses
International audienc