160 research outputs found
Geometric Origin of CP Violation in an Extra-Dimensional Brane World
The fermion mass hierarchy and finding a predictive mechanism of the flavor
mixing parameters remain two of the least understood puzzles facing particle
physics today. In this work, we demonstrate how the realization of the Dirac
algebra in the presence of two extra spatial dimensions leads to complex
fermion field profiles in the extra dimensions. Dimensionally reducing to four
dimensions leads to complex quark mass matrices in such a fashion that CP
violation necessarily follows. We also present the generalization of the
Randall-Sundrum scenario to the case of a multi-brane, six-dimensional
brane-world and discuss how multi-brane worlds may shed light on the generation
index of the SM matter content.Comment: 24 pages, 1 figure; references adde
Effective theory for wall-antiwall system
We propose a useful method for deriving the effective theory for a system
where BPS and anti-BPS domain walls coexist. Our method respects an
approximately preserved SUSY near each wall. Due to the finite width of the
walls, SUSY breaking terms arise at tree-level, which are exponentially
suppressed. A practical approximation using the BPS wall solutions is also
discussed. We show that a tachyonic mode appears in the matter sector if the
corresponding mode function has a broader profile than the wall width.Comment: LaTeX file, 30 page, 5 eps figures, references adde
Superfield description of 5D supergravity on general warped geometry
We provide a systematic and practical method of deriving 5D supergravity
action described by 4D superfields on a general warped geometry, including a
non-BPS background. Our method is based on the superconformal formulation of 5D
supergravity, but is easy to handle thanks to the superfield formalism. We
identify the radion superfield in the language of 5D superconformal gravity,
and clarify its appearance in the action. We also discuss SUSY breaking effects
induced by a deformed geometry due to the backreaction of the radius
stabilizer.Comment: 25 pages, no figures, LaTeX, final version to appear in JHE
A model of CP Violation from Extra Dimension
We construct a realistic model of CP violation in which CP is broken in the
process of dimensional reduction and orbifold compactification from a five
dimensional theories with gauge symmetry. CP
violation is a result of the Hosotani type gauge configuration in the higher
dimension.Comment: 5 page
Scherk-Schwarz SUSY breaking from the viewpoint of 5D conformal supergravity
We reinterpret the Scherk-Schwarz (SS) boundary condition for SU(2)_R in a
compactified five-dimensional (5D) Poincare supergravity in terms of the
twisted SU(2)_U gauge fixing in 5D conformal supergravity. In such translation,
only the compensator hypermultiplet is relevant to the SS twist, and various
properties of the SS mechanism can be easily understood. Especially, we show
the correspondence between the SS twist and constant superpotentials within our
framework.Comment: 16 pages, no figur
Weak boson scattering in Gauge-Higgs Unification
The scattering amplitude for the longitudinal weak bosons is investigated in
the SU(3) gauge-Higgs unification as a function of the scattering energy, the
Wilson line phase \theta_H and the warp factor. The \theta_H-dependence of the
amplitude is quite different in the flat and the warped spacetimes. Generically
the amplitude is enhanced for \theta_H=O(1) in the warped case while it is
almost independent of \theta_H in the flat case. This indicates the tree-level
unitarity is violated in the warped case at a lower scale than that in the flat
case.Comment: 22 pages, 8 figures, published version in JHE
An LSI chip set for DSP hardware implementation
éæȹ性ćŠçć·„ç 究ćăé»ćæ
ć ±ćŠ
Supersymmetric Boundaries and Junctions in Four Dimensions
We make a comprehensive study of (rigid) N=1 supersymmetric sigma-models with
general K\"ahler potentials K and superpotentials w on four-dimensional
space-times with boundaries. We determine the minimal (non-supersymmetric)
boundary terms one must add to the standard bulk action to make it off-shell
invariant under half the supersymmetries without imposing any boundary
conditions. Susy boundary conditions do arise from the variational principle
when studying the dynamics. Upon including an additional boundary action that
depends on an arbitrary real boundary potential B one can generate very general
susy boundary conditions. We show that for any set of susy boundary conditions
that define a Lagrangian submanifold of the K\"ahler manifold, an appropriate
boundary potential B can be found. Thus the non-linear sigma-model on a
manifold with boundary is characterised by the tripel (K,B,w). We also discuss
the susy coupling to new boundary superfields and generalize our results to
supersymmetric junctions between completely different susy sigma-models, living
on adjacent domains and interacting through a "permeable" wall. We obtain the
supersymmetric matching conditions that allow us to couple models with
different K\"ahler potentials and superpotentials on each side of the wall.Comment: 38 pages, 1 figur
Gauge-Higgs Dark Matter
When the anti-periodic boundary condition is imposed for a bulk field in
extradimensional theories, independently of the background metric, the lightest
component in the anti-periodic field becomes stable and hence a good candidate
for the dark matter in the effective 4D theory due to the remaining accidental
discrete symmetry. Noting that in the gauge-Higgs unification scenario,
introduction of anti-periodic fermions is well-motivated by a phenomenological
reason, we investigate dark matter physics in the scenario. As an example, we
consider a five-dimensional SO(5)\timesU(1)_X gauge-Higgs unification model
compactified on the with the warped metric. Due to the structure of
the gauge-Higgs unification, interactions between the dark matter particle and
the Standard Model particles are largely controlled by the gauge symmetry, and
hence the model has a strong predictive power for the dark matter physics.
Evaluating the dark matter relic abundance, we identify a parameter region
consistent with the current observations. Furthermore, we calculate the elastic
scattering cross section between the dark matter particle and nucleon and find
that a part of the parameter region is already excluded by the current
experimental results for the direct dark matter search and most of the region
will be explored in future experiments.Comment: 16 pages, 2 figure
SUSY flavor structure of generic 5D supergravity models
We perform a comprehensive and systematic analysis of the SUSY flavor
structure of generic 5D supergravity models on with multiple
-odd vector multiplets that generate multiple moduli. The SUSY flavor
problem can be avoided due to contact terms in the 4D effective K\"ahler
potential peculiar to the multi-moduli case. A detailed phenomenological
analysis is provided based on an illustrative model.Comment: 37 pages, 7 figures, Sec.4 is modifie
- âŠ