492 research outputs found

    Density minimum and liquid-liquid phase transition

    Full text link
    We present a high-resolution computer simulation study of the equation of state of ST2 water, evaluating the liquid-state properties at 2718 state points, and precisely locating the liquid-liquid critical point (LLCP) occurring in this model. We are thereby able to reveal the interconnected set of density anomalies, spinodal instabilities and response function extrema that occur in the vicinity of a LLCP for the case of a realistic, off-lattice model of a liquid with local tetrahedral order. In particular, we unambiguously identify a density minimum in the liquid state, define its relationship to other anomalies, and show that it arises due to the approach of the liquid structure to a defect-free random tetrahedral network of hydrogen bonds.Comment: 5 pages, 4 figure

    "Swarm relaxation": Equilibrating a large ensemble of computer simulations

    Full text link
    It is common practice in molecular dynamics and Monte Carlo computer simulations to run multiple, separately-initialized simulations in order to improve the sampling of independent microstates. Here we examine the utility of an extreme case of this strategy, in which we run a large ensemble of MM independent simulations (a "swarm"), each of which is relaxed to equilibrium. We show that if MM is of order 10310^3, we can monitor the swarm's relaxation to equilibrium, and confirm its attainment, within ∼10τˉ\sim 10\bar\tau, where τˉ\bar\tau is the equilibrium relaxation time. As soon as a swarm of this size attains equilibrium, the ensemble of MM final microstates from each run is sufficient for the evaluation of most equilibrium properties without further sampling. This approach dramatically reduces the wall-clock time required, compared to a single long simulation, by a factor of several hundred, at the cost of an increase in the total computational effort by a small factor. It is also well-suited to modern computing systems having thousands of processors, and is a viable strategy for simulation studies that need to produce high-precision results in a minimum of wall-clock time. We present results obtained by applying this approach to several test cases.Comment: 12 pages. To appear in Eur. Phy. J. E, 201

    Energy landscape of a simple model for strong liquids

    Full text link
    We calculate the statistical properties of the energy landscape of a minimal model for strong network-forming liquids. Dynamics and thermodynamic properties of this model can be computed with arbitrary precision even at low temperatures. A degenerate disordered ground state and logarithmic statistics for the energy distribution are the landscape signatures of strong liquid behavior. Differences from fragile liquid properties are attributed to the presence of a discrete energy scale, provided by the particle bonds, and to the intrinsic degeneracy of topologically disordered networks.Comment: Revised versio

    Non-Gaussian energy landscape of a simple model for strong network-forming liquids: accurate evaluation of the configurational entropy

    Full text link
    We present a numerical study of the statistical properties of the potential energy landscape of a simple model for strong network-forming liquids. The model is a system of spherical particles interacting through a square well potential, with an additional constraint that limits the maximum number of bonds, NmaxN_{\rm max}, per particle. Extensive simulations have been carried out as a function of temperature, packing fraction, and NmaxN_{\rm max}. The dynamics of this model are characterized by Arrhenius temperature dependence of the transport coefficients and by nearly exponential relaxation of dynamic correlators, i.e. features defining strong glass-forming liquids. This model has two important features: (i) landscape basins can be associated with bonding patterns; (ii) the configurational volume of the basin can be evaluated in a formally exact way, and numerically with arbitrary precision. These features allow us to evaluate the number of different topologies the bonding pattern can adopt. We find that the number of fully bonded configurations, i.e. configurations in which all particles are bonded to NmaxN_{\rm max} neighbors, is extensive, suggesting that the configurational entropy of the low temperature fluid is finite. We also evaluate the energy dependence of the configurational entropy close to the fully bonded state, and show that it follows a logarithmic functional form, differently from the quadratic dependence characterizing fragile liquids. We suggest that the presence of a discrete energy scale, provided by the particle bonds, and the intrinsic degeneracy of fully bonded disordered networks differentiates strong from fragile behavior.Comment: Final version. Journal of Chemical Physics 124, 204509 (2006

    Stochastic Model and Equivalent Ferromagnetic Spin Chain with Alternation

    Full text link
    We investigate a non-equilibrium reaction-diffusion model and equivalent ferromagnetic spin 1/2 XY spin chain with alternating coupling constant. The exact energy spectrum and the n-point hole correlations are considered with the help of the Jordan-Wigner fermionization and the inter-particle distribution function method. Although the Hamiltonian has no explicit translational symmetry, the translational invariance is recovered after long time due to the diffusion. We see the scaling relations for the concentration and the two-point function in finite size analysis.Comment: 7 pages, LaTeX file, to appear in J. Phys. A: Math. and Ge

    Distributions of inherent structure energies during aging

    Full text link
    We perform extensive simulations of a binary mixture Lennard-Jones system subjected to a temperature jump in order to study the time evolution of fluctuations during aging. Analyzing data from 1500 different aging realizations, we calculate distributions of inherent structure energies for different aging times and contrast them with equilibrium. We find that the distributions initially become narrower and then widen as the system equilibrates. For deep quenches, fluctuations in the glassy system differ significantly from those observed in equilibrium. Simulation results are partially captured by theoretical predictions only when the final temperature is higher than the mode coupling temperature.Comment: 5 pages, 4 figure

    Mode-coupling theory predictions for a limited valency attractive square-well model

    Full text link
    Recently we have studied, using numerical simulations, a limited valency model, i.e. an attractive square well model with a constraint on the maximum number of bonded neighbors. Studying a large region of temperatures TT and packing fractions ϕ\phi, we have estimated the location of the liquid-gas phase separation spinodal and the loci of dynamic arrest, where the system is trapped in a disordered non-ergodic state. Two distinct arrest lines for the system are present in the system: a {\it (repulsive) glass} line at high packing fraction, and a {\it gel} line at low ϕ\phi and TT. The former is essentially vertical (ϕ\phi-controlled), while the latter is rather horizontal (TT-controlled) in the (ϕ−T)(\phi-T) plane. We here complement the molecular dynamics results with mode coupling theory calculations, using the numerical structure factors as input. We find that the theory predicts a repulsive glass line -- in satisfactory agreement with the simulation results -- and an attractive glass line which appears to be unrelated to the gel line.Comment: 12 pages, 6 figures. To appear in J. Phys. Condens. Matter, special issue: "Topics in Application of Scattering Methods for Investigation of Structure and Dynamics of Soft Condensed Matter", Fiesole, November 200
    • …
    corecore