20,010 research outputs found
Comment on ``Effective Mass and g-Factor of Four Flux Quanta Composite Fermions"
In a recent Letter, Yeh et al.[Phys. Rev. Lett. 82, 592 (1999)] have shown
beautiful experimental results which indicate that the composite fermions with
four flux quanta (CF) behave as fermions with mass and spin just like those
with two flux quanta. They observed the collapse of the fractional quantum Hall
gaps when the following condition is satisfied with some integer ,
, where and
are the g-factor and the cyclotron frequency of the CF,
respectively. However, in their picture the gap at the Fermi energy remains
always finite even if the above condition is satisfied, thus the reason of the
collapse was left as a mystery. In this comment it is shown that part of the
mystery is resolved by considering the electron-hole symmetry properly.Comment: 2 pages, RevTeX. Minor chang
Vortex pinning by cylindrical defects in type-II superconductors: Numerical solutions to the Ginzburg-Landau equations
We numerically integrate the one-dimensional, cylindrically symmetric Ginzburg-Landau equations to calculate the spatial variation of the order parameter and supercurrents for a vortex trapped by a cylindrical defect. We use the resulting field distributions to estimate the pinning energy, and make use of the vortex/two-dimensional boson analogy to calculate the depinning temperature. The microscopic behavior oi the fields depends on the size, and the conductivity of the cylindrical defect appears to be important for the pinning
Measurement of ortho-Positronium Properties in Liquid Scintillators
Pulse shape discrimination in liquid scintillator detectors is a
well-established technique for the discrimination of heavy particles from light
particles. Nonetheless, it is not efficient in the separation of electrons and
positrons, as they give rise to indistinguishable scintillator responses. This
inefficiency can be overtaken through the exploitation of the formation of
ortho-Positronium (o-Ps), which alters the time profile of light pulses induced
by positrons.
We characterized the o-Ps properties in the most commonly used liquid
scintillators, i.e. PC, PXE, LAB, OIL and PC + PPO. In addition, we studied the
effects of scintillator doping on the o-Ps properties for dopants currently
used in neutrino experiments, Gd and Nd. Further measurements for Li-loaded and
Tl-loaded liquid scintillators are foreseen. We found that the o-Ps properties
are suitable for enhancing the electron-positron discrimination.Comment: 4 pages, 1 figure. Contribution to proceedings of the Low
Radioactivity Techniques 2013 Workshop at LNGS, Assergi (AQ), Italy, April
10-12 201
Power system applications of fiber optic sensors
This document is a progress report of work done in 1985 on the Communications and Control for Electric Power Systems Project at the Jet Propulsion Laboratory. These topics are covered: Electric Field Measurement, Fiber Optic Temperature Sensing, and Optical Power transfer. Work was done on the measurement of ac and dc electric fields. A prototype sensor for measuring alternating fields was made using a very simple electroscope approach. An electronic field mill sensor for dc fields was made using a fiber optic readout, so that the entire probe could be operated isolated from ground. There are several instances in which more precise knowledge of the temperature of electrical power apparatus would be useful. This report describes a number of methods whereby the distributed temperature profile can be obtained using a fiber optic sensor. The ability to energize electronics by means of an optical fiber has the advantage that electrical isolation is maintained at low cost. In order to accomplish this, it is necessary to convert the light energy into electrical form by means of photovoltaic cells. JPL has developed an array of PV cells in gallium arsenide specifically for this purpose. This work is described
Observation of vortices and hidden pseudogap from scanning tunneling spectroscopic studies of electron-doped cuprate superconductor
We present the first demonstration of vortices in an electron-type cuprate
superconductor, the highest (= 43 K) electron-type cuprate
. Our spatially resolved quasiparticle tunneling spectra
reveal a hidden low-energy pseudogap inside the vortex core and unconventional
spectral evolution with temperature and magnetic field. These results cannot be
easily explained by the scenario of pure superconductivity in the ground state
of high- superconductivity.Comment: 6 pages, 4 figures. Two new graphs have been added into Figure 2.
Accepted for publication in Europhysics Letters. Corresponding author:
Nai-Chang Yeh (E-mail: [email protected]
Investigating the Physical Origin of Unconventional Low-Energy Excitations and Pseudogap Phenomena in Cuprate Superconductors
We investigate the physical origin of unconventional low-energy excitations
in cuprate superconductors by considering the effect of coexisting competing
orders (CO) and superconductivity (SC) and of quantum fluctuations and other
bosonic modes on the low-energy charge excitation spectra. By incorporating
both SC and CO in the bare Green's function and quantum phase fluctuations in
the self-energy, we can consistently account for various empirical findings in
both the hole- and electron-type cuprates, including the excess subgap
quasiparticle density of states, ``dichotomy'' in the fluctuation-renormalized
quasiparticle spectral density in momentum space, and the occurrence and
magnitude of a low-energy pseudogap being dependent on the relative gap
strength of CO and SC. Comparing these calculated results with experiments of
ours and others, we suggest that there are two energy scales associated with
the pseudogap phenomena, with the high-energy pseudogap probably of magnetic
origin and the low-energy pseudogap associated with competing orders.Comment: 10 pages, 5 figures. Invited paper for the 2006 Taiwan International
Conference on Superconductivity. Correspondence author: Nai-Chang Yeh
(e-mail: [email protected]
Interfacial strain in AlxGa1–xAs layers on GaAs
Detailed analysis of x-ray rocking curves was used to determine the depth profile of strain and composition in a 2500-Å-thick layer of AlxGa1–xAs grown by metalorganic chemical vapor deposition on 100 GaAs. The x value and layer thickness were in good agreement with the values expected from growth parameters. The presence of a transition region, 280 Å thick, was detected by the rocking curve. In this region, the Al concentration varies smoothly from 0 to 0.87. Measurement and control of the sharpness of such interfaces has important implications for heterojunction devices
- …