830 research outputs found
Flux Tube Model Signals for Baryon Correlations in Heavy Ion Collisions
The flux tube model offers a pictorial description of what happens during the
deconfinement phase transition in QCD. The 3-point vertices of a flux tube
network lead to formation of baryons upon hadronisation. Therefore,
correlations in the baryon number distribution at the last scattering surface
are related to the preceding pattern of the flux tube vertices, and provide a
signature of the nearby deconfinement phase transition. I discuss the nature of
the expected signal, which should be observable in heavy ion collisions at RHIC
and LHC.Comment: LaTeX, 9 pages, 5 figures, (v2) Several arguments expanded for
clarity, (v3) Minor typesetting changes, published versio
Extension of the Nambu--Jona-Lasinio model at high densities and temperatures by using an implicit regularization scheme
Traditional cutoff regularization schemes of the Nambu--Jona-Lasinio model
limit the applicability of the model to energy-momentum scales much below the
value of the regularizing cutoff. In particular, the model cannot be used to
study quark matter with Fermi momenta larger than the cutoff. In the present
work an extension of the model to high temperatures and densities recently
proposed by Casalbuoni, Gatto, Nardulli, and Ruggieri is used in connection
with an implicit regularization scheme. This is done by making use of scaling
relations of the divergent one-loop integrals that relate these integrals at
different energy-momentum scales. Fixing the pion decay constant at the chiral
symmetry breaking scale in the vacuum, the scaling relations predict a running
coupling constant that decreases as the regularization scale increases,
implementing in a schematic way the property of asymptotic freedom of quantum
chromodynamics. If the regularization scale is allowed to increase with density
and temperature, the coupling will decrease with density and temperature,
extending in this way the applicability of the model to high densities and
temperatures. These results are obtained without specifying an explicit
regularization. As an illustration of the formalism, numerical results are
obtained for the finite density and finite temperature quark condensate, and to
the problem of color superconductivity at high quark densities and finite
temperature.Comment: 7 pages, 5 eps figures - in version 3, substantial changes in text,
results and conclusions unchanged. To be published in Phys. Rev.
Self-consistent symmetries in the proton-neutron Hartree-Fock-Bogoliubov approach
Symmetry properties of densities and mean fields appearing in the nuclear
Density Functional Theory with pairing are studied. We consider energy
functionals that depend only on local densities and their derivatives. The most
important self-consistent symmetries are discussed: spherical, axial,
space-inversion, and mirror symmetries. In each case, the consequences of
breaking or conserving the time-reversal and/or proton-neutron symmetries are
discussed and summarized in a tabulated form, useful in practical applications.Comment: 26 RevTex pages, 1 eps figure, 9 tables, submitted to Physical Review
Two flavor color superconductivity in nonlocal chiral quark models
We study the competence between chiral symmetry restoration and two flavor
color superconductivity (2SC) using a relativistic quark model with covariant
nonlocal interactions. We consider two different nonlocal regulators: a
Gaussian regulator and a Lorentzian regulator. We find that although the phase
diagrams are qualitative similar to those obtained using models with local
interactions, in our case the superconducting gaps at medium values of the
chemical potential are larger. Consequently, we obtain that in that region the
critical temperatures for the disappearance of the 2SC phase might be of the
order of 100-120 MeV. We also find that for ratios of the quark-quark and
quark-antiquark couplings somewhat above the standard value 3/4, the end point
and triple point in the phase diagram meet and a phase where both the
chiral and diquark condensates are non-negligible appears.Comment: 15 pages incl. 5 Postscript figure
Photon distribution amplitudes and light-cone wave functions in chiral quark models
The leading- and higher-twist distribution amplitudes and light-cone wave
functions of real and virtual photons are analyzed in chiral quark models. The
calculations are performed in the nonlocal quark model based on the instanton
picture of QCD vacuum, as well as in the spectral quark model and the
Nambu--Jona-Lasinio model with the Pauli-Villars regulator, which both treat
interaction of quarks with external fields locally. We find that in all
considered models the leading-twist distribution amplitudes of the real photon
defined at the quark-model momentum scale are constant or remarkably close to
the constant in the variable, thus are far from the asymptotic limit form.
The QCD evolution to higher momentum scales is necessary and we carry it out at
the leading order of the perturbative theory for the leading-twist amplitudes.
We provide estimates for the magnetic susceptibility of the quark condensate
and the coupling , which in the nonlocal model turn out
to be close to the estimates from QCD sum rules. We find the higher-twist
distribution amplitudes at the quark model scale and compare them to the
Wandzura-Wilczek estimates. In addition, in the spectral model we evaluate the
distribution amplitudes and light-cone wave functions of the -meson.Comment: 24 pages, 15 figure
Rotational Bands and Electromagnetic Transitions of some even-even Neodymium Nuclei in J-Projected Hartree-Fock Model
Rotational structures of even-even Nd nuclei are studied with the
self-consistent deformed Hartree-Fock (HF) and angular momentum (J) projection
model. Spectra of ground band, recently observed , and a few
more excited, positive and negative parity bands have been studied upto high
spin values. Apart from these detailed electromagnetic properties (like E2, M1
matrix elements) of all the bands have been obtained. There is substantial
agreement between our model calculations and available experimental data.
Predictions are made about the band structures and electromagnetic properties
of these nuclei. Some 4-qasiparticle K-isomeric bands and their electromagnetic
properties are predicted.Comment: 20 page
Model independent approach to studies of the confining dual Abrikosov vortex in SU(2) lattice gauge theory
We address the problem of determining the type I, type II or borderline dual
superconductor behavior in maximal Abelian gauge SU(2) through the study of the
dual Abrikosov vortex. We find that significant electric currents in the
simulation data call into question the use of the dual Ginzburg Landau Higgs
model in interpreting the data. Further, two definitions of the penetration
depth parameter take two different values. The splitting of this parameter into
two is intricately connected to the existence of electric currents. It is
important in our approach that we employ definitions of flux and electric and
magnetic currents that respect Maxwell equations exactly for lattice averages
independent of lattice spacings. Applied to specific Wilson loop sizes, our
conclusions differ from those that use the dual GLH model.Comment: 18 pages, 14 figures, change title, new anaylysis with more figure
Two- and three-body color flux tubes in the Chromo Dielectric Model
Using the framework of the Chromo Dielectric Model we perform an analysis of
color electric flux tubes in meson-like and baryon-like quark
configurations. We discuss the Abelian color structure of the model and point
out a symmetry in color space as a remnant of the SU(3) symmetry of QCD. The
generic features of the model are discussed by varying the model parameters. We
fix these parameters by reproducing the string tension MeV/fm and
the transverse width fm of the flux tube obtained in
lattice calculations. We use a bag constant MeV, a glueball
mass MeV and a strong coupling constant . We show that the asymptotic string profile of an infinitely long flux
tube is already reached for separations fm. A connection
to the Dual Color Superconductor is made by extracting a magnetic current from
the model equations and a qualitative agreement between the two descriptions of
confinement is shown. In the study of the system we observe a
-like geometry for the color electric fields and a
\textsf{Y}-like geometry in the scalar fields both in the energy density
distribution and in the corresponding potentials. The resulting total
potential is described neither by the -picture nor by the
\textsf{Y}-picture alone.Comment: 32 pages, 35 eps-figures, revised version, some references + 1
eps-file added, to be published in Phys.Rev.
Baryon Density and the Dilated Chiral Quark Model
We calculate perturbatively the effect of density on hadronic properties
using the chiral quark model implemented by the QCD trace anomaly to see the
possibility of constructing Lorentz invariant Lagrangian at finite density. We
calculate the density dependent masses of the constituent quark, the scalar
field and the pion in one-loop order using the technique of thermo field
dynamics. In the chiral limit, the pion remains massless at finite density. It
is found that the tadpole type corrections lead to the decreasing masses with
increasing baryon density, while the radiative corrections induce
Lorentz-symmetry-breaking terms. We found in the large limit with large
scalar mass that the tadpoles dominate and the mean-field approximation is
reliable, giving rise a Lorentz-invariant Lagrangian with masses decreasing as
the baryon density increases.Comment: Late
Does the effective Lagrangian for low-energy QCD scale?
QCD is not an approximately scale invariant theory. Hence a dilaton field is
not expected to provide a good description of the low-energy dynamics
associated with the gluon condensate. Even if such a field is introduced, it
remains almost unchanged in hadronic matter at normal densities. This is
because the large glueball mass together with the size of the phenomenological
gluon condensate ensure that changes to that condensate are very small at such
densities. Any changes in hadronic masses and decay constants in matter
generated by that condensate will be much smaller that those produced directly
by changes in the quark condensate. Hence masses and decay constants are not
expected to display a universal scaling.Comment: 7 pages (RevTeX), MC/TH 94/0
- …