1,317 research outputs found
Magneto-optical determination of the electron-solid phase-boundary
We have obtained a two-dimensional electron-solid phase diagram in the extreme magnetic quantum limit by studying the temperature dependence of the radiative recombination of electrons in a GaAs/AlxGa1-xAs heterojunction with holes bound to a delta-layer, 250 A away in the GaAs, of Be acceptors. The low-energy shoulder to the luminescence line, indicating the presence of the electron solid, is seen to disappear at a filling-factor-dependent critical temperature. We observe no shoulder above a filling factor of 0.25, and the critical temperature falls to below 0.4 K at filling factors 1/5 and 1/7
The QUEST RR Lyrae Survey II: The Halo Overdensities in the First Catalog
The first catalog of the RR Lyrae stars (RRLS) in the Galactic halo by the
QUEST Survey has been searched for significant overdensities that may be debris
from disrupted dwarf galaxies or globular clusters. Away from the major
overdensities, the distribution of these stars is adequately fit by a smooth
halo model, in which the flattening of the halo decreases with increasing
galactocentric distance (Preston et al 1991). This model was used to estimate
the ``background'' of RRLS on which the halo overdensities are overlaid. A
procedure was developed for recognizing groups of stars that constitute
significant overdensities with respect to this background. To test this
procedure, a Monte Carlo routine was used to make artificial RRLS surveys that
follow the smooth halo model, but with Poisson distributed noise in the numbers
of RRLS and, within limits, random variations in the positions and magnitudes
of the artificial stars. The artificial surveys created by this routine were
examined for significant groups in exactly the same way as the QUEST survey.
These calculations provided estimates of the frequencies with which random
fluctuations produce significant groups. In the QUEST survey, there are six
significant overdensities that contain six or more stars and several smaller
ones. The small ones and possibly one or two of the larger ones may be
artifacts of statistical fluctuations, and they need to be confirmed by
measurements of radial velocity and/or proper motion. The most prominent groups
are the northern stream from the Sagittarius dwarf spheroidal galaxy and a
large group in Virgo. Two other groups lie in the direction of the Monoceros
stream and at approximately the right distance for membership. Another group is
related to the globular cluster Palomar 5.Comment: Accepted for publication in the Astronomical Journa
Selection of DNA nanoparticles with preferential binding to aggregated protein target.
High affinity and specificity are considered essential for affinity reagents and molecularly-targeted therapeutics, such as monoclonal antibodies. However, life's own molecular and cellular machinery consists of lower affinity, highly multivalent interactions that are metastable, but easily reversible or displaceable. With this inspiration, we have developed a DNA-based reagent platform that uses massive avidity to achieve stable, but reversible specific recognition of polyvalent targets. We have previously selected these DNA reagents, termed DeNAno, against various cells and now we demonstrate that DeNAno specific for protein targets can also be selected. DeNAno were selected against streptavidin-, rituximab- and bevacizumab-coated beads. Binding was stable for weeks and unaffected by the presence of soluble target proteins, yet readily competed by natural or synthetic ligands of the target proteins. Thus DeNAno particles are a novel biomolecular recognition agent whose orthogonal use of avidity over affinity results in uniquely stable yet reversible binding interactions
Tuning gaps and phases of a two-subband system in a quantizing magnetic field
In this work we study the properties of a two-subband quasi-two-dimensional
electron system in a strong magnetic field when the electron filling factor is
equal to four. When the cyclotron energy is close to the intersubband splitting
the system can be mapped onto a four-level electron system with an effective
filling factor of two. The ground state is either a ferromagnetic state or a
spin-singlet state, depending on the values of the inter-level splitting and
Zeeman energy. The boundaries between these phases are strongly influenced by
the inter-electron interaction. A significant exchange-mediated enhancement of
the excitation gap results in the suppression of the electron-phonon
interaction. The rate of absorption of non-equilibrium phonons is calculated as
a function of Zeeman energy and inter-subband splitting. The phonon absorption
rate has two peaks as a function of intersubband splitting and has a step-like
structure as a function of Zeeman energy
Universal critical temperature for Kosterlitz-Thouless transitions in bilayer quantum magnets
Recent experiments show that double layer quantum Hall systems may have a
ground state with canted antiferromagnetic order. In the experimentally
accessible vicinity of a quantum critical point, the order vanishes at a
temperature T_{KT} = \kappa H, where H is the magnetic field and \kappa is a
universal number determined by the interactions and Berry phases of the thermal
excitations. We present quantum Monte Carlo simulations on a model spin system
which support the universality of \kappa and determine its numerical value.
This allows experimental tests of an intrinsically quantum-mechanical universal
quantity, which is not also a property of a higher dimensional classical
critical point.Comment: 5 pages, 4 figure
Electron-phonon scattering at the intersection of two Landau levels
We predict a double-resonant feature in the magnetic field dependence of the
phonon-mediated longitudinal conductivity of a two-subband
quasi-two-dimensional electron system in a quantizing magnetic field. The two
sharp peaks in appear when the energy separation between two
Landau levels belonging to different size-quantization subbands is favorable
for acoustic-phonon transitions. One-phonon and two-phonon mechanisms of
electron conductivity are calculated and mutually compared. The phonon-mediated
interaction between the intersecting Landau levels is considered and no avoided
crossing is found at thermal equilibrium.Comment: 13 pages, 8 figure
Proper Motions in the Galactic Bulge: Plaut's Window
A proper motion study of a field of 20' x 20' inside Plaut's low extinction
window (l,b)=(0 deg,-8 deg), has been completed. Relative proper motions and
photographic BV photometry have been derived for ~21,000 stars reaching to
V~20.5 mag, based on the astrometric reduction of 43 photographic plates,
spanning over 21 years of epoch difference. Proper motion errors are typically
1 mas/yr and field dependent systematics are below 0.2 mas/yr.
Cross-referencing with the 2MASS catalog yielded a sample of ~8,700 stars, from
which predominantly disk and bulge subsamples were selected photometrically
from the JH color-magnitude diagram. The two samples exhibited different
proper-motion distributions, with the disk displaying the expected reflex solar
motion as a function of magnitude. Galactic rotation was also detected for
stars between ~2 and ~3 kpc from us. The bulge sample, represented by red
giants, has an intrinsic proper motion dispersion of (sigma_l,sigma_b)=(3.39,
2.91)+/-(0.11,0.09) mas/yr, which is in good agreement with previous results,
and indicates a velocity anisotropy consistent with either rotational
broadening or tri-axiality. A mean distance of 6.37^{+0.87}_{-0.77} kpc has
been estimated for the bulge sample, based on the observed K magnitude of the
horizontal branch red clump. The metallicity [M/H] distribution was also
obtained for a subsample of 60 bulge giants stars, based on calibrated
photometric indices. The observed [M/H] shows a peak value at [M/H]~-0.1 with
an extended metal poor tail and around 30% of the stars with supersolar
metallicity. No change in proper motion dispersion was observed as a function
of [M/H]. We are currently in the process of obtaining CCD UBVRI photometry for
the entire proper-motion sample of ~21,000 stars.Comment: Submitted to AJ April 17th 2007. Accepted June 8th 2007. 45 pages, 14
figure
Quasiparticle properties of a coupled quantum wire electron-phonon system
We study leading-order many-body effects of longitudinal optical (LO) phonons
on electronic properties of one-dimensional quantum wire systems. We calculate
the quasiparticle properties of a weakly polar one dimensional electron gas in
the presence of both electron-phonon and electron-electron interactions. The
leading-order dynamical screening approximation (GW approximation) is used to
obtain the electron self-energy, the quasiparticle spectral function, and the
quasiparticle damping rate in our calculation by treating electrons and phonons
on an equal footing. Our theory includes effects (within the random phase
approximation) of Fermi statistics, Landau damping, plasmon-phonon mode
coupling, phonon renormalization, dynamical screening, and impurity scattering.
In general, electron-electron and electron-phonon many-body renormalization
effects are found to be nonmultiplicative and nonadditive in our theoretical
results for quasiparticle properties.Comment: 21 pages, Revtex, 12 figures enclose
Modulated structures in electroconvection in nematic liquid crystals
Motivated by experiments in electroconvection in nematic liquid crystals with
homeotropic alignment we study the coupled amplitude equations describing the
formation of a stationary roll pattern in the presence of a weakly-damped mode
that breaks isotropy. The equations can be generalized to describe the planarly
aligned case if the orienting effect of the boundaries is small, which can be
achieved by a destabilizing magnetic field. The slow mode represents the
in-plane director at the center of the cell. The simplest uniform states are
normal rolls which may undergo a pitchfork bifurcation to abnormal rolls with a
misaligned in-plane director.We present a new class of defect-free solutions
with spatial modulations perpendicular to the rolls. In a parameter range where
the zig-zag instability is not relevant these solutions are stable attractors,
as observed in experiments. We also present two-dimensionally modulated states
with and without defects which result from the destabilization of the
one-dimensionally modulated structures. Finally, for no (or very small)
damping, and away from the rotationally symmetric case, we find static chevrons
made up of a periodic arrangement of defect chains (or bands of defects)
separating homogeneous regions of oblique rolls with very small amplitude.
These states may provide a model for a class of poorly understood stationary
structures observed in various highly-conducting materials ("prechevrons" or
"broad domains").Comment: 13 pages, 13 figure
Benign cystic mesothelioma of the appendix presenting in a woman: a case report
<p>Abstract</p> <p>Introduction</p> <p>Benign cystic mesothelioma or peritoneal inclusion cysts are rare benign abdominal tumors usually occurring in females of reproductive age. These cysts present as abdominopelvic pain or masses but are often found on imaging or incidentally at surgery. They are commonly associated with pelvic inflammatory disease, endometriosis, or ovarian cysts. We report what is, to the best of our knowledge, the first case of a benign cystic mesothelioma complicating a presentation of acute appendicitis.</p> <p>Case Presentation</p> <p>A 19-year-old Irish Caucasian woman presented with abdominal pain. Imaging suggested appendicitis with abscess formation. She was treated with antibiotics and scheduled for interval appendicectomy. At laparoscopy, an unusual cystic mass was found arising from the appendix. Histology revealed benign cystic mesothelioma.</p> <p>Conclusion</p> <p>We report what is, to the best of our knowledge, the first case of a benign cystic mesothelioma arising from the appendix and complicating a presentation of acute appendicitis. This is a benign pathology, but recurrences are not uncommon. Benign cystic mesothelioma should be included in the differential when investigating pelvic masses or abscesses associated with either appendicitis or pelvic inflammatory disease in women.</p
- …