75 research outputs found
Comparison of conventional risk factors, clinical and angiographic profile between younger and older coronary heart disease patients
Background: Although numerous risk factors have been established to predict the development of Coronary artery Disease, the risk factor profile may be different between the younger and older individuals. The aim of the study was to compare risk factors, clinical profile and angiographic profile of young and old coronary heart disease patients.Methods: Patients admitted at cardiac intensive care unit at Sunderam Ahulraj Hospital of south India between January 2012 and December 2013 were classified in to two age groups with 40yrs as cut-off. Patients were assessed for conventional risk factors (diabetes mellitus, dyslipidaemia, hypertension, smoking, and obesity), clinical profile and angiographic profiles.Results: A total of 100 patients, out of which 32patients were ≤40yrs of age and 68 patients >40yrs of age, were evaluated. Mean age for younger group (40yrs) was 55.39 yrs. Range of age group for study population was 28-72 yrs. The prevalence of obesity, dyslipidaemia, and smoking/ tobacco chewing did not vary significantly between the two groups. Older patients had higher frequency of diabetes (48.5%) and hypertension (41.1%). The most commonly affected coronary artery was the left anterior descending artery among both age groups.Conclusions: Young patients with Coronary heart disease had different risk profile and less extensive coronary artery disease as compared to older counterparts. Emphasis should be given on diagnosis and management of major modifiable risk factors
Rotational Bands and Electromagnetic Transitions of some even-even Neodymium Nuclei in J-Projected Hartree-Fock Model
Rotational structures of even-even Nd nuclei are studied with the
self-consistent deformed Hartree-Fock (HF) and angular momentum (J) projection
model. Spectra of ground band, recently observed , and a few
more excited, positive and negative parity bands have been studied upto high
spin values. Apart from these detailed electromagnetic properties (like E2, M1
matrix elements) of all the bands have been obtained. There is substantial
agreement between our model calculations and available experimental data.
Predictions are made about the band structures and electromagnetic properties
of these nuclei. Some 4-qasiparticle K-isomeric bands and their electromagnetic
properties are predicted.Comment: 20 page
Dihyperon in Chiral Colour Dielectric Model
The mass of dihyperon with spin, parity and isospin
is calculated in the framework of Chiral colour dielectric model. The wave
function of the dihyperon is expressed as a product of two colour-singlet
baryon clusters. Thus the quark wave functions within the cluster are
antisymmetric. Appropriate operators are then used to antisymmetrize
inter-cluster quark wave functions. The radial part of the quark wavefunctions
are obtained by solving the the quark and dielectric field equations of motion
obtained in the Colour dielectric model. The mass of the dihyperon is computed
by including the colour magnetic energy as well as the energy due to meson
interaction. The recoil correction to the dihyperon mass is incorporated by
Peierls-Yoccoz technique. We find that the mass of the dihyperon is smaller
than the threshold by over 100 MeV. The implications of our
results on the present day relativistic heavy ion experiments is discussed.Comment: LaTeX, 13 page
Quark Hadron Phase Transition and Hybrid Stars
We investigate the properties of hybrid stars consisting of quark matter in
the core and hadron matter in outer region. The hadronic and quark matter
equations of state are calculated by using nonlinear Walecka model and chiral
colour dielectric (CCD) model respectively. We find that the phase transition
from hadron to quark matter is possible in a narrow range of the parameters of
nonlinear Walecka and CCD models. The transition is strong or weak first order
depending on the parameters used. The EOS thus obtained, is used to study the
properties of hybrid stars. We find that the calculated hybrid star properties
are similar to those of pure neutron stars.Comment: 25 pages in LaTex and 9 figures available on request, IP/BBSR/94-3
Characterizing Gravitational Wave Detector Networks: From A to Cosmic Explorer
Gravitational-wave observations by the Laser Interferometer
Gravitational-Wave Observatory (LIGO) and Virgo have provided us a new tool to
explore the universe on all scales from nuclear physics to the cosmos and have
the massive potential to further impact fundamental physics, astrophysics, and
cosmology for decades to come. In this paper we have studied the science
capabilities of a network of LIGO detectors when they reach their best possible
sensitivity, called A#, and a new generation of observatories that are factor
of 10 to 100 times more sensitive (depending on the frequency), in particular a
pair of L-shaped Cosmic Explorer observatories (one 40 km and one 20 km arm
length) in the US and the triangular Einstein Telescope with 10 km arms in
Europe. We use a set of science metrics derived from the top priorities of
several funding agencies to characterize the science capabilities of different
networks. The presence of one or two A# observatories in a network containing
two or one next generation observatories, respectively, will provide good
localization capabilities for facilitating multimessenger astronomy and
precision measurement of the Hubble parameter. A network of two Cosmic Explorer
observatories and the Einstein Telescope is critical for accomplishing all the
identified science metrics including the nuclear equation of state,
cosmological parameters, growth of black holes through cosmic history, and make
new discoveries such as the presence of dark matter within or around neutron
stars and black holes, continuous gravitational waves from rotating neutron
stars, transient signals from supernovae, and the production of stellar-mass
black holes in the early universe. For most metrics the triple network of next
generation terrestrial observatories are a factor 100 better than what can be
accomplished by a network of three A# observatories.Comment: 45 pages, 20 figure
Nothing Lasts Forever: Environmental Discourses on the Collapse of Past Societies
The study of the collapse of past societies raises many questions for the theory and practice of archaeology. Interest in collapse extends as well into the natural sciences and environmental and sustainability policy. Despite a range of approaches to collapse, the predominant paradigm is environmental collapse, which I argue obscures recognition of the dynamic role of social processes that lie at the heart of human communities. These environmental discourses, together with confusion over terminology and the concepts of collapse, have created widespread aporia about collapse and resulted in the creation of mixed messages about complex historical and social processes
- …