172 research outputs found

    Characterization of deep impurities in semiconductors by terahertz tunneling ionization

    Get PDF
    Tunneling ionization in high frequency fields as well as in static fields is suggested as a method for the characterization of deep impurities in semiconductors. It is shown that an analysis of the field and temperature dependences of the ionization probability allows to obtain defect parameters like the charge of the impurity, tunneling times, the Huang–Rhys parameter, the difference between optical and thermal binding energy, and the basic structure of the defect adiabatic potentials. Compared to static fields, high frequency electric fields in the terahertz-range offer various advantages, as they can be applied contactlessly and homogeneously even to bulk samples using the intense radiation of a high power pulsed far-infrared laser. Furthermore, impurity ionization with terahertz radiation can be detected as photoconductive signal with a very high sensitivity in a wide range of electric field strengths

    Commensurability oscillations in the rf conductivity of unidirectional lateral superlattices: measurement of anisotropic conductivity by coplanar waveguide

    Full text link
    We have measured the rf magnetoconductivity of unidirectional lateral superlattices (ULSLs) by detecting the attenuation of microwave through a coplanar waveguide placed on the surface. ULSL samples with the principal axis of the modulation perpendicular (S_perp) and parallel (S_||) to the microwave electric field are examined. For low microwave power, we observe expected anisotropic behavior of the commensurability oscillations (CO), with CO in samples S_perp and S_|| dominated by the diffusion and the collisional contributions, respectively. Amplitude modulation of the Shubnikov-de Haas oscillations is observed to be more prominent in sample S_||. The difference between the two samples is washed out with the increase of the microwave power, letting the diffusion contribution govern the CO in both samples. The failure of the intended directional selectivity in the conductivity measured with high microwave power is interpreted in terms of large-angle electron-phonon scattering.Comment: 8 pages, 5 figure

    High-frequency transport in pp-type Si/Si0.87_{0.87}Ge0.13_{0.13} heterostructures studied with surface acoustic waves in the quantum Hall regime

    Full text link
    The interaction of surface acoustic waves (SAW) with pp-type Si/Si0.87_{0.87}Ge0.13_{0.13} heterostructures has been studied for SAW frequencies of 30-300 MHz. For temperatures in the range 0.7<T<<T<1.6 K and magnetic fields up to 7 T, the SAW attenuation coefficient Γ\Gamma and velocity change ΔV/V\Delta V /V were found to oscillate with filling factor. Both the real σ1\sigma_1 and imaginary σ2\sigma_2 components of the high-frequency conductivity have been determined and compared with quasi-dc magnetoresistance measurements at temperatures down to 33 mK. By analyzing the ratio of σ1\sigma_1 to σ2\sigma_2, carrier localization can be followed as a function of temperature and magnetic field. At TT=0.7 K, the variations of Γ\Gamma, ΔV/V\Delta V /V and σ1\sigma_1 with SAW intensity have been studied and can be explained by heating of the two dimensional hole gas by the SAW electric field. Energy relaxation is found to be dominated by acoustic phonon deformation potential scattering with weak screening.Comment: Accepted for publication in PR

    Nonmonotonic Temperature-dependent Resistance in Low Density 2D Hole Gases

    Full text link
    The low temperature longitudinal resistance-per-square Rxx(T) in ungated GaAs/AlGaAs quantum wells of high peak hole mobility 1.7x10^6 cm^2/Vs is metallic for 2D hole density p as low as 3.8x10^9 cm-2. The electronic contribution to the resistance, R_{el}(T), is a nonmonotonic function of T, exhibiting thermal activation, R_{el}(T) ~ exp{-E_a/kT}, for kT<<E_F and a heretofore unnoted decay R_{el}(T) ~ 1/T for k_T>EF. The form of R_{el}(T) is independent of density, indicating a fundamental relationship between the low and high T scattering mechanisms in the metallic state

    Quantum interference effects in p-Si1−xGex quantum wells

    Get PDF
    Quantum interference effects, such as weak localization and electronelectron interaction (EEI), have been investigated in magnetic fields up to 11 T for hole gases in a set of Si1−xGex quantum wells with 0.13 < x < 0.95. The temperature dependence of the hole phase relaxation time has been extracted from the magneto-resistance between 35 mK and 10 K. The spin-orbit effects that can be described within the Rashba model were observed in low magnetic fields. A quadratic negative magneto-resistance was observed in strong magnetic fields, due to the EEI effect. The hole-phonon scattering time was determined from hole overheating in a strong magnetic field

    Distinction between the Poole-Frenkel and tunneling models of electric field-stimulated carrier emission from deep levels in semiconductors

    Get PDF
    The enhancement of the emission rate of charge carriers from deep-level defects in electric field is routinely used to determine the charge state of the defects. However, only a limited number of defects can be satisfactorily described by the Poole-Frenkel theory. An electric field dependence different from that expected from the Poole-Frenkel theory has been repeatedly reported in the literature, and no unambiguous identification of the charge state of the defect could be made. In this article, the electric field dependencies of emission of carriers from DX centers in AlxGa1-xAs:Te, Cu pairs in silicon, and Ge:Hg have been studied applying static and terahertz electric fields, and analyzed by using the models of Poole-Frenkel and phonon assisted tunneling. It is shown that phonon assisted tunneling and Poole-Frenkel emission are two competitive mechanisms of enhancement of emission of carriers, and their relative contribution is determined by the charge state of the defect and by the electric-field strength. At high-electric field strengths carrier emission is dominated by tunneling independently of the charge state of the impurity. For neutral impurities, where Poole-Frenkel lowering of the emission barrier does not occur, the phonon assisted tunneling model describes well the experimental data also in the low-field region. For charged impurities the transition from phonon assisted tunneling at high fields to Poole-Frenkel effect at low fields can be traced back. It is suggested that the Poole-Frenkel and tunneling models can be distinguished by plotting logarithm of the emission rate against the square root or against the square of the electric field, respectively. This analysis enables one to unambiguously determine the charge state of a deep-level defect

    Interactions in high-mobility 2D electron and hole systems

    Full text link
    Electron-electron interactions mediated by impurities are studied in several high-mobility two-dimensional (electron and hole) systems where the parameter kBTτ/k_BT\tau /\hbar changes from 0.1 to 10 (τ\tau is the momentum relaxation time). This range corresponds to the \textit{intermediate} and \textit {ballistic} regimes where only a few impurities are involved in electron-electron interactions. The interaction correction to the Drude conductivity is detected in the temperature dependence of the resistance and in the magnetoresistance in parallel and perpendicular magnetic fields. The effects are analysed in terms of the recent theories of electron interactions developed for the ballistic regime. It is shown that the character of the fluctuation potential (short-range or long-range) is an important factor in the manifestation of electron-electron interactions in high-mobility 2D systems.Comment: 22 pages, 11 figures; to appear in proceedings of conference "Fundamental Problems of Mesoscopic Physics", Granada, Spain, 6-11 September, 200

    Hole-hole interaction effect in the conductance of the two-dimensional hole gas in the ballistic regime

    Get PDF
    On a high-mobility two-dimensional hole gas (2DHG) in a GaAs/GaAlAs heterostructure we study the interaction correction to the Drude conductivity in the ballistic regime, k(B)Ttau/(h) over bar >1. It is shown that the "metallic" behavior of the resistivity (drho/dT>0) of the low-density 2DHG is caused by the hole-hole interaction effect in this regime. We find that the temperature dependence of the conductivity and the parallel-field magnetoresistance are in agreement with this description, and determine the Fermi-liquid interaction constant F-0(sigma) which controls the sign of drho/dT

    Interaction of surface acoustic waves with a two-dimensional electron gas in the presence of spin splitting of the Landau bands

    Full text link
    The absorption and variation of the velocity of a surface acoustic wave of frequency ff= 30 MHz interacting with two-dimensional electrons are investigated in GaAs/AlGaAs heterostructures with an electron density n=(1.32.8)×1011cm2n=(1.3 - 2.8) \times 10^{11} cm^{-2} at TT=1.5 - 4.2 K in magnetic fields up to 7 T. Characteristic features associated with spin splitting of the Landau level are observed. The effective g factor and the width of the spin-split Landau bands are determined: g5g^* \simeq 5 and AA=0.6 meV. The greater width of the orbital-split Landau bands (2 meV) relative to the spin-split bands is attributed to different shielding of the random fluctuation potential of charged impurities by 2D electrons. The mechanisms of the nonlinearities manifested in the dependence of the absorption and the velocity increment of the SAW on the SAW power in the presence of spin splitting of the Landau levels are investigated.Comment: Revtex 5 pages + 5 EPS Figures, v.2 - minor corrections in text and pic
    corecore