8,416 research outputs found
Structural relaxation in a system of dumbbell molecules
The interaction-site-density-fluctuation correlators, the dipole-relaxation
functions, and the mean-squared displacements of a system of symmetric
dumbbells of fused hard spheres are calculated for two representative
elongations of the molecules within the mode-coupling theory for the evolution
of glassy dynamics. For large elongations, universal relaxation laws for states
near the glass transition are valid for parameters and time intervals similar
to the ones found for the hard-sphere system. Rotation-translation coupling
leads to an enlarged crossover interval for the mean-squared displacement of
the constituent atoms between the end of the von Schweidler regime and the
beginning of the diffusion process. For small elongations, the superposition
principle for the reorientational -process is violated for parameters
and time intervals of interest for data analysis, and there is a strong
breaking of the coupling of the -relaxation scale for the diffusion
process with that for representative density fluctuations and for dipole
reorientations.Comment: 15 pages, 14 figures, Phys. Rev. E in pres
Operational approach to the Uhlmann holonomy
We suggest a physical interpretation of the Uhlmann amplitude of a density
operator. Given this interpretation we propose an operational approach to
obtain the Uhlmann condition for parallelity. This allows us to realize
parallel transport along a sequence of density operators by an iterative
preparation procedure. At the final step the resulting Uhlmann holonomy can be
determined via interferometric measurements.Comment: Added material, references, and journal reference
Metamorphosis Imposes Variable Constraints on Genome Expansion through Effects on Development
Genome size varies âŒ100,000-fold across eukaryotes and has long been hypothesized to be influenced by meta- morphosis in animals. Transposable element accumulation has been identified as a major driver of increase, but the nature of constraints limiting the size of genomes has remained unclear, even as traits such as cell size and rate of development co-vary strongly with genome size. Salamanders, which possess diverse metamorphic and non-metamorphic life histories, join the lung- fish in having the largest vertebrate genomesâ3 to 40 times that of humansâas well as the largest range of variation in genome size. We tested 13 biologically-inspired hypotheses exploring how the form of metamorphosis imposes varying constraints on genome expansion in a broadly representative phylogeny containing 118 species of salamanders. We show that metamorphosis during which animals undergo the most extensive and synchronous remodeling imposes the most severe constraint against genome expansion, with the severity of constraint decreasing with reduced extent and synchronicity of remodeling. More generally, our work demonstrates the potential for broader interpretation of phylogenetic comparative analysis in exploring the balance of multiple evolutionary pressures shaping phenotypic evolution
Identification of a transporter complex responsible for the cytosolic entry of nitrogen-containing bisphosphonates
Nitrogen-containing-bisphosphonates (N-BPs) are widely prescribed to treat osteoporosis and other bone-related diseases. Although previous studies established that N-BPs function by inhibiting the mevalonate pathway in osteoclasts, the mechanism by which N-BPs enter the cytosol from the extracellular space to reach their molecular target is not understood. Here we implemented a CRISPRi-mediated genome-wide screen and identified SLC37A3 (solute carrier family 37 member A3) as a gene required for the action of N-BPs in mammalian cells. We observed that SLC37A3 forms a complex with ATRAID (all-trans retinoic acid-induced differentiation factor), a previously identified genetic target of N-BPs. SLC37A3 and ATRAID localize to lysosomes and are required for releasing N-BP molecules that have trafficked to lysosomes through fluid-phase endocytosis into the cytosol. Our results elucidate the route by which N-BPs are delivered to their molecular target, addressing a key aspect of the mechanism of action of N-BPs that may have significant clinical relevance
Thermodynamical Metrics and Black Hole Phase Transitions
An important phase transition in black hole thermodynamics is associated with
the divergence of the specific heat with fixed charge and angular momenta, yet
one can demonstrate that neither Ruppeiner's entropy metric nor Weinhold's
energy metric reveals this phase transition. In this paper, we introduce a new
thermodynamical metric based on the Hessian matrix of several free energy. We
demonstrate, by studying various charged and rotating black holes, that the
divergence of the specific heat corresponds to the curvature singularity of
this new metric. We further investigate metrics on all thermodynamical
potentials generated by Legendre transformations and study correspondences
between curvature singularities and phase transition signals. We show in
general that for a system with n-pairs of intensive/extensive variables, all
thermodynamical potential metrics can be embedded into a flat (n,n)-dimensional
space. We also generalize the Ruppeiner metrics and they are all conformal to
the metrics constructed from the relevant thermodynamical potentials.Comment: Latex, 25 pages, reference added, typos corrected, English polished
and the Hawking-Page phase transition clarified; to appear in JHE
Radiative Higgs Boson Decays H\to f\bar{f}\gamma Beyond the Standard Model
Neutral Higgs boson radiative decays of the form h_0, H, A \to
f\bar{f}\gamma, in the light fermion limit $m_f->0, are calculated in the two
Higgs doublet model at one-loop level. Comparisons with the calculation within
the standard model are given, which indicates that these two models are
distinguishable in the decay mode fermion-antifermion -photon. Our results show
that the concerned process may stand as an implement to identify the Higgs
belongings in case there is a intermediate mass Higgs detected.Comment: 13 pages in Revtex, version to appear in Phys. Rev.
A mode-coupling theory for the glassy dynamics of a diatomic probe molecule immersed in a simple liquid
Generalizing the mode-coupling theory for ideal liquid-glass transitions,
equations of motion are derived for the correlation functions describing the
glassy dynamics of a diatomic probe molecule immersed in a simple glass-forming
system. The molecule is described in the interaction-site representation and
the equations are solved for a dumbbell molecule consisting of two fused hard
spheres in a hard-sphere system. The results for the molecule's arrested
position in the glass state and the reorientational correlators for
angular-momentum index and near the glass transition are
compared with those obtained previously within a theory based on a
tensor-density description of the molecule in order to demonstrate that the two
approaches yield equivalent results. For strongly hindered reorientational
motion, the dipole-relaxation spectra for the -process can be mapped on
the dielectric-loss spectra of glycerol if a rescaling is performed according
to a suggestion by Dixon et al. [Phys. Rev. Lett. {\bf 65}, 1108 (1990)]. It is
demonstrated that the glassy dynamics is independent of the molecule's inertia
parameters.Comment: 19 pages, 10 figures, Phys. Rev. E, in prin
A study of the fine scale motions of incompressible time-developing mixing layers
This work is an extension of a project conducted at the previous CTR summer program and was reported by Chen et al. (1990). In that program, the geometry and topology of the dissipating motions in a variety of shear flows was examined. All data was produced by direct numerical simulations (DNS). The partial derivatives of the velocity field were determined at every grid point in the flow and various invariants and related quantities were computed from the velocity gradient tensor. Motions characterized by high rates of kinetic energy dissipation and high enstrophy were of particular interest. Scatter diagrams of the invariants were mapped out and interesting and unexpected patterns were seen. Each type of shear layer produced its own characteristic scatter plot. In the present project, attention is focused on the incompressible plane mixing layer, and the scatter diagrams are replaced with more useful joint probability density contours. Comparison of the topology of the dissipating motions of flows at different Reynolds numbers are made. Also, plane mixing layers at the same Reynolds number but with different initial conditions are compared
- âŠ