5 research outputs found

    Large deviations for many Brownian bridges with symmetrised initial-terminal condition

    Get PDF
    Consider a large system of NN Brownian motions in Rd\mathbb{R}^d with some non-degenerate initial measure on some fixed time interval [0,β][0,\beta] with symmetrised initial-terminal condition. That is, for any ii, the terminal location of the ii-th motion is affixed to the initial point of the σ(i)\sigma(i)-th motion, where σ\sigma is a uniformly distributed random permutation of 1,...,N1,...,N. Such systems play an important role in quantum physics in the description of Boson systems at positive temperature 1/β1/\beta. In this paper, we describe the large-N behaviour of the empirical path measure (the mean of the Dirac measures in the NN paths) and of the mean of the normalised occupation measures of the NN motions in terms of large deviations principles. The rate functions are given as variational formulas involving certain entropies and Fenchel-Legendre transforms. Consequences are drawn for asymptotic independence statements and laws of large numbers. In the special case related to quantum physics, our rate function for the occupation measures turns out to be equal to the well-known Donsker-Varadhan rate function for the occupation measures of one motion in the limit of diverging time. This enables us to prove a simple formula for the large-N asymptotic of the symmetrised trace of eβHN{\rm e}^{-\beta \mathcal{H}_N}, where HN\mathcal{H}_N is an NN-particle Hamilton operator in a trap

    Critical behaviour near multiple junctions and dirty surfaces in the two-dimensional Ising model

    Full text link
    We consider m two-dimensional semi-infinite planes of Ising spins joined together through surface spins and study the critical behaviour near to the junction. The m=0 limit of the model - according to the replica trick - corresponds to the semi-infinite Ising model in the presence of a random surface field (RSFI). Using conformal mapping, second-order perturbation expansion around the weakly- and strongly-coupled planes limits and differential renormalization group, we show that the surface critical behaviour of the RSFI model is described by Ising critical exponents with logarithmic corrections to scaling, while at multiple junctions (m>2) the transition is first order. There is a spontaneous junction magnetization at the bulk critical point.Comment: Old paper, for archiving. 6 pages, 1 figure, IOP macro, eps

    Some mathematical methods for frustration models

    Full text link
    corecore