660 research outputs found
Dynamics of combined electron beam and laser dispersion of polymers in vacuum
The mechanisms of the impact of the laser assisting effect on the dispersion kinetics and on the structure of the deposited layers in electron beam dispersion of a polymer target were analyzed. The proposed model and analytical expressions adequately describe the kinetic dependence of the polymer materials dispersion rate in a vacuum on the intensity of laser processing of their dispersion zone
Adaptive observers for nonlinearly parameterized systems subjected to parametric constraints
We consider the problem of adaptive observer design in the settings when the
system is allowed to be nonlinear in the parameters, and furthermore they are
to satisfy additional feasibility constraints. A solution to the problem is
proposed that is based on the idea of universal observers and non-uniform
small-gain theorem. The procedure is illustrated with an example.Comment: 19th IFAC World Congress on Automatic Control, 10869-10874, South
Africa, Cape Town, 24th-29th August, 201
Determination of the Superconductor-Insulator Phase Diagram for One-Dimensional Wires
We establish the superconductor-insulator phase diagram for quasi-one
dimensional wires by measuring a large set of MoGe nanowires. This diagram is
consistent with the Chakravarty-Schmid-Bulgadaev phase boundary, namely with
the critical resistance being equal to R_Q = h/4e^2. We find that transport
properties of insulating nanowires exhibit a weak Coulomb blockade behavior.Comment: 5 pages, 4 figure
Superconducting properties of polycrystalline Nb nanowires templated by carbon nanotubes
Journal ArticleContinuous Nb wires, 7-15 nm in diameter, have been fabricated by sputter-coating single fluorinated carbon nanotubes. Transmission electron microscopy revealed that the wires are polycrystalline, having grain sizes of about 5 nm. The critical current of wires thicker than ~12 nm is very high (107 A/cm2) and comparable to the expected depairing current. The resistance versus temperature curves measured down to 0.3 K are well described by the Langer-Ambegaokar-McCumber-Halperin theory of thermally activated phase slips. Quantum phase slips are suppressed
Enhancing superconductivity: Magnetic impurities and their quenching by magnetic fields
Magnetic fields and magnetic impurities are each known to suppress
superconductivity. However, as the field quenches (i.e. polarizes) the
impurities, rich consequences, including field-enhanced superconductivity, can
emerge when both effects are present. For the case of superconducting wires and
thin films, this field-spin interplay is investigated via the
Eilenberger-Usadel scheme. Non-monotonic dependence of the critical current on
the field (and therefore field-enhanced superconductivity) is found to be
possible, even in parameter regimes in which the critical temperature decreases
monotonically with increasing field. The present work complements that of
Kharitonov and Feigel'man, which predicts non-monotonic behavior of the
critical temperature.Comment: 8 pages, 2 figures, EPL forma
Effect of morphology on the superconductor-insulator transition in one-dimensional nanowires
Journal ArticleWe study the effect of morphology on the low-temperature behavior of superconducting nanowires which vary in length from 86 nm to 188 nm. A well-defined superconductor-insulator transition is observed only in the family of homogeneous wires, in which case the transition occurs when the normal resistance is close to h/4e2. Inhomogeneous wires, on the other hand, exhibit a mixed behavior, such that signatures of the superconducting and insulating regimes can be observed in the same sample. The resistance versus temperature curves of inhomogeneous wires show multiple steps, each corresponding to a weak link constriction (WLC) present in the wire. Similarly, each WLC generates a differential resistance peak when the bias current reaches the critical current of the WLC. Due to the presence of WLC's an inhomogeneous wire splits into a sequence of weakly interacting segments where each segment can act as a superconductor or as an insulator. Thus the entire wire then shows a mixed behavior
Dichotomy in short superconducting nanowires: thermal phase slippage vs. Coulomb blockade
ManuscriptQuasi-one-dimensional superconductors or nanowires exhibit a transition into a nonsuperconducting regime, as their diameter shrinks. We present measurements on ultrashort nanowires (βΌ40-190 nm long) in the vicinity of this quantum transition. Properties of all wires in the superconducting phase, even those close to the transition, can be explained in terms of thermally activated phase slips. The behavior of nanowires in the nonsuperconducting phase agrees with the theories of the Coulomb blockade of coherent transport through mesoscopic normal metal conductors. Thus it is concluded that the quantum transition occurs between two phases: a "true superconducting phase" and an "insulating phase". No intermediate, "metallic" phase was found
Determination of the superconductor-insulator phase diagram for one-dimensional wires
Journal ArticleWe establish the superconductor-insulator phase diagram for quasi-one-dimensional wires by measuring a large set of MoGe nanowires. This diagram is roughly consistent with the Chakravarty-Schmid-Bulgadaev phase boundary, namely, with the critical resistance being equal to RQ ΒΌ h=4e2. Deviations from this boundary for a small fraction of the samples prompt us to suggest an alternative phase diagram, which matches the data exactly. Transport properties of wires in the superconducting phase are dominated by phase slips, whereas insulating nanowires exhibit a weak Coulomb blockade behavior
Influence of high magnetic fields on the superconducting transition of one-dimensional Nb and MoGe nanowires
Journal ArticleThe effects of a strong magnetic field on superconducting Nb and MoGe nanowires with diameter ~10 nm have been studied. We have found that the Langer-Ambegaokar-McCumber-Halperin (LAMH) theory of thermally activated phase slips is applicable in a wide range of magnetic fields and describes well the temperature dependence of the wire resistance, over 11 orders of magnitude. The field dependence of the critical temperature, Tc, extracted from the LAMH fits is in good quantitative agreement with the theory of pair-breaking perturbations that takes into account both spin and orbital contributions. The extracted spin-orbit scattering time agrees with an estimate Οs.o. ~ Ο (hc/Ze2)4, where Ο is the elastic scattering time and Z is the atomic number
- β¦