66 research outputs found

    Giant Anisotropic Magnetoresistance in a Quantum Anomalous Hall Insulator

    Full text link
    When a three-dimensional (3D) ferromagnetic topological insulator thin film is magnetized out-of-plane, conduction ideally occurs through dissipationless, one-dimensional (1D) chiral states that are characterized by a quantized, zero-field Hall conductance. The recent realization of this phenomenon - the quantum anomalous Hall effect - provides a conceptually new platform for studies of edge-state transport, distinct from the more extensively studied integer and fractional quantum Hall effects that arise from Landau level formation. An important question arises in this context: how do these 1D edge states evolve as the magnetization is changed from out-of-plane to in-plane? We examine this question by studying the field-tilt driven crossover from predominantly edge state transport to diffusive transport in Cr-doped (Bi,Sb)2Te3 thin films, as the system transitions from a quantum anomalous Hall insulator to a gapless, ferromagnetic topological insulator. The crossover manifests itself in a giant, electrically tunable anisotropic magnetoresistance that we explain using the Landauer-Buttiker formalism. Our methodology provides a powerful means of quantifying edge state contributions to transport in temperature and chemical potential regimes far from perfect quantization

    Coherent Heteroepitaxy of Bi2Se3 on GaAs (111)B

    Full text link
    We report the heteroepitaxy of single crystal thin films of Bi2Se3 on the (111)B surface of GaAs by molecular beam epitaxy. We find that Bi2Se3 grows highly c-axis oriented, with an atomically sharp interface with the GaAs substrate. By optimizing the growth of a very thin GaAs buffer layer before growing the Bi2Se3, we demonstrate the growth of thin films with atomically flat terraces over hundreds of nanometers. Initial time-resolved Kerr rotation measurements herald opportunities for probing coherent spin dynamics at the interface between a candidate topological insulator and a large class of GaAs-based heterostructures.Comment: To appear in Applied Physics Letter

    Room temperature spin-orbit torque switching induced by a topological insulator

    Get PDF
    Recent studies on the magneto-transport properties of topological insulators (TI) have attracted great attention due to the rich spin-orbit physics and promising applications in spintronic devices. Particularly the strongly spin-moment coupled electronic states have been extensively pursued to realize efficient spin-orbit torque (SOT) switching. However, so far current-induced magnetic switching with TI has only been observed at cryogenic temperatures. It remains a controversial issue whether the topologically protected electronic states in TI could benefit spintronic applications at room temperature. In this work, we report full SOT switching in a TI/ferromagnet bilayer heterostructure with perpendicular magnetic anisotropy at room temperature. The low switching current density provides a definitive proof on the high SOT efficiency from TI. The effective spin Hall angle of TI is determined to be several times larger than commonly used heavy metals. Our results demonstrate the robustness of TI as an SOT switching material and provide a direct avenue towards applicable TI-based spintronic devices
    corecore