38 research outputs found

    Problems

    Get PDF

    Stressed backbone and elasticity of random central-force systems

    Full text link
    We use a new algorithm to find the stress-carrying backbone of ``generic'' site-diluted triangular lattices of up to 10^6 sites. Generic lattices can be made by randomly displacing the sites of a regular lattice. The percolation threshold is Pc=0.6975 +/- 0.0003, the correlation length exponent \nu =1.16 +/- 0.03 and the fractal dimension of the backbone Db=1.78 +/- 0.02. The number of ``critical bonds'' (if you remove them rigidity is lost) on the backbone scales as L^{x}, with x=0.85 +/- 0.05. The Young's modulus is also calculated.Comment: 5 pages, 5 figures, uses epsfi

    Cycles and Cuts

    No full text

    2nd European Congress of Mathematics

    No full text
    This is the second volume of the procedings of the second European Congress of Mathematics. Volume I presents the speeches delivered at the Congress, the list of lectures, and short summaries of the achievements of the prize winners. Together with volume II it contains a collection of contributions by the invited lecturers. Finally, volume II also presents reports on some of the Round Table discussions. This two-volume set thus gives an overview of the state of the art in many fields of mathematics and is therefore of interest to every professional mathematician. Contributors: Vol. I: N. Alon, L. Ambrosio, K. Astala, R. Benedetti, Ch. Bessenrodt, F. Bethuel, P. Bjørstad, E. Bolthausen, J. Bricmont, A. Kupiainen, D. Burago, L. Caporaso, U. Dierkes, I. Dynnikov, L.H. Eliasson, W.T. Gowers, H. Hedenmalm, A. Huber, J. Kaczorowski, J. Kollár, D.O. Kramkov, A.N. Shiryaev, C. Lescop, R. März. Vol. II: J. Matousek, D. McDuff, A.S. Merkurjev, V. Milman, St. Müller, T. Nowicki, E. Olivieri, E. Scoppola, V.P. Platonov, J. Pöschel, L. Polterovich , L. Pyber, N. Simányi, J.P. Solovej, A. Stipsicz, G. Tardos, J.-P. Tignol, A.P. Veselov, E. Zuazua

    Polynomial time manhattan routing without doglegs - a generalization of gallai's algorithm

    No full text
    Gallai's classical result on interval packing can be applied in VLSI routing to find, in linear time, a minimum/width dogleg/free routing in the Manhattan model, provided that all the terminals are on one side of a rectangular [1]. Should the terminals appear on two opposite sides of a rectangular, the corresponding "channel routing problem" is NP/complete [2,3]. We generalize Gallai's result for the case if the terminals appear on two adjacent sides of the rectangular
    corecore