65 research outputs found

    An introduction to crowdsourcing for language and multimedia technology research

    Get PDF
    Language and multimedia technology research often relies on large manually constructed datasets for training or evaluation of algorithms and systems. Constructing these datasets is often expensive with significant challenges in terms of recruitment of personnel to carry out the work. Crowdsourcing methods using scalable pools of workers available on-demand offers a flexible means of rapid low-cost construction of many of these datasets to support existing research requirements and potentially promote new research initiatives that would otherwise not be possible

    Single Tube, High Throughput Cloning of Inverted Repeat Constructs for Double-Stranded RNA Expression

    Get PDF
    BACKGROUND: RNA interference (RNAi) has emerged as a powerful tool for the targeted knockout of genes for functional genomics, system biology studies and drug discovery applications. To meet the requirements for high throughput screening in plants we have developed a new method for the rapid assembly of inverted repeat-containing constructs for the in vivo production of dsRNAs. METHODOLOGY/PRINCIPAL FINDINGS: The procedure that we describe is based on tagging the sense and antisense fragments with unique single-stranded (ss) tails which are then assembled in a single tube Ligase Independent Cloning (LIC) reaction. Since the assembly reaction is based on the annealing of unique complementary single stranded tails which can only assemble in one orientation, greater than ninety percent of the resultant clones contain the desired insert. CONCLUSION/SIGNIFICANCE: Our single-tube reaction provides a highly efficient method for the assembly of inverted repeat constructs for gene suppression applications. The single tube assembly is directional, highly efficient and readily adapted for high throughput applications

    Circular Polymerase Extension Cloning of Complex Gene Libraries and Pathways

    Get PDF
    High-throughput genomics and the emerging field of synthetic biology demand ever more convenient, economical, and efficient technologies to assemble and clone genes, gene libraries and synthetic pathways. Here, we describe the development of a novel and extremely simple cloning method, circular polymerase extension cloning (CPEC). This method uses a single polymerase to assemble and clone multiple inserts with any vector in a one-step reaction in vitro. No restriction digestion, ligation, or single-stranded homologous recombination is required. In this study, we elucidate the CPEC reaction mechanism and demonstrate its usage in demanding synthetic biology applications such as one-step assembly and cloning of complex combinatorial libraries and multi-component pathways

    A new PCR based method for the generation of nested deletions.

    No full text
    We have developed a simple, PCR-based protocol, random primed/anchored-PCR (RPA-PCR), that allows the selective amplification and efficient cloning of segments that are adjacent to any known sequence. We demonstrate that RPA-PCR can be used to prepare a nested set of evenly spaced deletions suitable for DNA sequencing. However, it should also be possible to use this technique for a number of other purposes: generating deletions for the analysis of eukaryotic promoters, extending cDNA clones in the 5' direction, cloning the insertion sites of retroviral proviruses and transposons, and analyzing intron/exon boundaries
    corecore