517 research outputs found

    ORRÊA TEIXEIRA, R.; SOUZA RAMOS, L. (orgs.) (2017). Conflitos do Século 21, Fino Traço

    Get PDF
    CORRÊA TEIXEIRA, R.; SOUZA RAMOS, L. (orgs.) (2017). Conflitos do Século 21, Fino Traço - Editora, Belo Horizonte (Brasil), 200 página

    The double life of MULE in preeclamptic and IUGR placentae

    Get PDF
    The E3 ubiquitin ligase MULE (Mcl-1 Ubiquitin Ligases E3) targets myeloid cell leukemia factor 1 (Mcl-1) and tumor suppressor p53 for proteasomal degradation. Although Mcl-1 and p53 have been implicated in trophoblast cell death in preeclampsia (PE) and intrauterine growth restriction (IUGR), the mechanisms regulating their expression in the human placenta remains elusive. Herein, we investigated MULE's involvement in regulating Mcl-1 and p53 degradation during normal and abnormal (PE, IUGR) placental development. MULE expression peaked at 5–7 weeks of gestation, when oxygen tension is low and inversely correlated with that of Mcl-1 and p53. MULE efficiently bound to Mcl-1 and p53 and regulated their ubiquitination during placental development. Exposure of first trimester villous explants to 3% O2 resulted in elevated MULE expression compared with 20% O2. Low-oxygen-induced MULE expression in JEG3 choriocarcinoma cells was abolished by hypoxia-inducible factor (HIF)-1α siRNA. MULE was overexpressed in both PE and IUGR placentae. In PE, MULE preferentially targeted p53 for degradation, allowing accumulation of pro-apoptotic Mcl-1 isoforms. In IUGR, however, MULE targeted pro-survival Mcl-1, allowing p53 to accumulate and exert its apoptotic function. These data demonstrate that oxygen regulates Mcl-1 and p53 stability during placentation via HIF-1-controlled MULE expression. The different preferential targets of MULE in PE and IUGR placentae classify early-onset PE and IUGR as distinct molecular pathologies

    Angiogenesis in NSCLC: is vessel co-option the trunk that sustains the branches?

    Get PDF
    The critical role of angiogenesis in tumor development makes its inhibition a valuable new approach in therapy, rapidly making anti-angiogenesis a major focus in research. While the VEGF/VEGFR pathway is the main target of the approved anti-angiogenic molecules in NSCLC treatment, the results obtained are still modest, especially due to resistance mechanisms. Accumulating scientific data show that vessel co-option is an alternative mechanism to angiogenesis during tumor development in well-vascularized organs such as the lungs, where tumor cells highjack the existing vasculature to obtain its blood supply in a non-angiogenic fashion. This can explain the low/lack of response to current anti-angiogenic strategies. The same principle applies to lung metastases of other primary tumors. The exact mechanisms of vessel co-option need to be further elucidated, but it is known that the co-opted vessels regress by the action of Angiopoietin-2 (Ang-2), a vessel destabilizing cytokine expressed by the endothelial cells of the pre-existing mature vessels. In the absence of VEGF, vessel regression leads to tumor cell loss and hypoxia, with a subsequent switch to a neoangiogenic phenotype by the remaining tumor cells. Unravelling the vessel co-option mechanisms and involved players may be fruitful for numerous reasons, and the particularities of this form of vascularization should be carefully considered when planning anti-angiogenic interventions or designing clinical trials for this purpose. In view of the current knowledge, rationale for therapeutic approaches of dual inhibition of Ang-2 and VEGF are swiftly gaining strength and may serve as a launchpad to more successful NSCLC anti-vascular treatments.info:eu-repo/semantics/publishedVersio

    Effect of Placenta-Derived Mesenchymal Stromal Cells Conditioned Media on an LPS-Induced Mouse Model of Preeclampsia

    Get PDF
    We tested the pro-angiogenic and anti-inflammatory effects of human placenta-derived mesenchymal stromal cells (hPDMSCs)-derived conditioned media (CM) on a mouse model of preeclampsia (PE), a severe human pregnancy-related syndrome characterized by maternal hypertension, proteinuria, endothelial damage, inflammation, often associated with fetal growth restriction (FGR). At d11 of pregnancy, PE was induced in pregnant C57BL/6N mice by bacterial lipopolysaccharide (LPS) intravenous injection. At d12, 300 μL of unconditioned media (control group) or 300 μL PDMSCs-CM (CM group) were injected. Maternal systolic blood pressure was measured from 9 to 18 days of pregnancy. Urine protein content were analyzed at days 12, 13, and 17 of pregnancy. At d19, mice were sacrificed. Number of fetuses, FGR, fetal reabsorption, and placental weight were evaluated. Placentae were analyzed for sFlt-1, IL-6, and TNF-α gene and protein expressions. No FGR and/or reabsorbed fetuses were delivered by PDMSCs-CM-treated PE mice, while five FGR fetuses were found in the control group accompanied by a lower placental weight. PDMSCs-CM injection significantly decreased maternal systolic blood pressure, proteinuria, sFlt-1, IL-6, and TNF-α levels in PE mice. Our data indicate that hPDMSCs-CM can reverse PE-like features during pregnancy, suggesting a therapeutic role for hPDMSCs for the treatment of preeclampsia

    The HMGB1/RAGE pro-inflammatory axis in the human placenta: Modulating effect of low molecular weight heparin

    Get PDF
    We evaluated whether physiological and pre-eclamptic (PE) placentae, characterized by exacerbated inflammation, presented alterations in pro-inflammatory High Mobility Group Box 1 (HMGB1) and its Receptor of Advanced Glycation End products (RAGE) expression. Moreover, we investigated, in physiological placental tissue, the ability of Low Molecular Weight Heparin (LMWH) to modify HMGB1 structural conformation thus inhibiting RAGE binding and HMGB1/RAGE axis inflammatory activity. HMGB1, RAGE, IL-6 and TNFα (HMGB1/RAGE targets) mRNA expression were assessed by Real Time PCR. HMGB1, RAGE protein levels were assessed by western blot assay. Physiological term placental explants were treated by 0.5 U LMWH for 24 or 48 h. HMGB1 and RAGE expression and association were evaluated in LMWH explants by RAGE immunoprecipitation followed by HMGB1 immunoblot. HMGB1 spatial localization was evaluated by immuofluorescent staining (IF). HMGB1 expression was increased in PE relative to physiological placentae while RAGE was unvaried. 24 h LMWH treatment significantly up-regulated HMGB1 expression but inhibited HMGB1/RAGE complex formation in physiological explants. RAGE expression decreased in treated relative to untreated explants at 48 h. IF showed HMGB1 localization in both cytoplasm and nucleus of mesenchymal and endothelial cells but not in the trophoblast. IL-6 and TNFα gene expression were significantly increased at 24 h relative to controls, while they were significantly down-regulated in 48 h vs. 24 h LMWH explants. Our data depicted a new molecular mechanism through which LMWH exerts its anti-inflammatory effect on PE placentae, underlying the importance of HMGB1/RAGE axis in PE inflammatory response
    • …
    corecore