713 research outputs found

    Using scale heights derived from bottomside ionograms for modelling the IRI topside profile

    Get PDF
    Groundbased ionograms measure the Chapman scale height <i>H<sub>T</sub></i> at the F2-layer peak that is used to construct the topside profile. After a brief review of the topside model extrapolation technique, comparisons are presented between the modeled profiles with incoherent scatter radar and satellite measurements for the mid latitude and equatorial ionosphere. The total electron content TEC, derived from measurements on satellite beacon signals, is compared with the height-integrated profiles ITEC from the ionograms. Good agreement is found with the ISR profiles and with results using the low altitude TOPEX satellite. The TEC values derived from GPS signal analysis are systematically larger than ITEC. It is suggested to use <i>H<sub>T</sub></i> , routinely measured by a large number of Digisondes around the globe, for the construction of the IRI topside electron density profile

    Local Properties of the Potential Energy Landscape of a Model Glass: Understanding the Low Temperature Anomalies

    Full text link
    Though the existence of two-level systems (TLS) is widely accepted to explain low temperature anomalies in the sound absorption, heat capacity, thermal conductivity and other quantities, an exact description of their microscopic nature is still lacking. We performed computer simulations for a binary Lennard-Jones system, using a newly developed algorithm to locate double-well potentials (DWP) and thus two-level systems on a systematic basis. We show that the intrinsic limitations of computer simulations like finite time and finite size problems do not hamper this analysis. We discuss how the DWP are embedded in the total potential energy landscape. It turns out that most DWP are connected to the dynamics of the smaller particles and that these DWP are rather localized. However, DWP related to the larger particles are more collective

    Critical currents in Josephson junctions with macroscopic defects

    Full text link
    The critical currents in Josephson junctions of conventional superconductors with macroscopic defects are calculated for different defect critical current densities as a function of the magnetic field. We also study the evolution of the different modes with the defect position, at zero external field. We study the stability of the solutions and derive simple arguments, that could help the defect characterization. In most cases a reentrant behavior is seen, where both a maximum and a minimum current exist.Comment: 17 pages with 16 figures, submitted to Supercond. Sci. Techno

    Interference, reduced action, and trajectories

    Get PDF
    Instead of investigating the interference between two stationary, rectilinear wave functions in a trajectory representation by examining the two rectilinear wave functions individually, we examine a dichromatic wave function that is synthesized from the two interfering wave functions. The physics of interference is contained in the reduced action for the dichromatic wave function. As this reduced action is a generator of the motion for the dichromatic wave function, it determines the dichromatic wave function's trajectory. The quantum effective mass renders insight into the behavior of the trajectory. The trajectory in turn renders insight into quantum nonlocality.Comment: 12 pages text, 5 figures. Typos corrected. Author's final submission. A companion paper to "Welcher Weg? A trajectory representation of a quantum Young's diffraction experiment", quant-ph/0605121. Keywords: interference, nonlocality, trajectory representation, entanglement, dwell time, determinis

    Dynamical effects in electron transfer reactions

    Full text link

    Backward correlations and dynamic heterogeneities: a computer study of ion dynamics

    Full text link
    We analyse the correlated back and forth dynamics and dynamic heterogeneities, i.e. the presence of fast and slow ions, for a lithium metasilicate system via computer simulations. For this purpose we define, in analogy to previous work in the field of glass transition, appropriate three-time correlation functions. They contain information about the dynamics during two successive time intervals. First we apply them to simple model systems in order to clarify their information content. Afterwards we use this formalism to analyse the lithium trajectories. A strong back-dragging effect is observed, which also fulfills the time-temperature superposition principle. Furthermore, it turns out that the back-dragging effect is long-ranged and exceeds the nearest neighbor position. In contrast, the strength of the dynamic heterogeneities does not fulfill the time-temperature superposition principle. The lower the temperature, the stronger the mobility difference between fast and slow ions. The results are then compared with the simple model systems considered here as well as with some lattice models of ion dynamics.Comment: 12 pages, 10 figure
    • 

    corecore