71,726 research outputs found
Out-of-plane seismic response of stone masonry walls: experimental and analytical study of real piers
This paper presents the application of an existing simplified displacement-based procedure to the
characterization of the nonlinear force-displacement relationship for the out-of-plane behaviour of
unreinforced traditional masonry walls. According to this procedure, tri-linear models based on three
different energy based criteria were constructed and confronted with three experimental tests on
existing stone masonry constructions. Moreover, a brief introduction is presented regarding the main
characteristics of the in situ cyclic testing recently carried out using distributed loads, as well as results
obtained during the experimental campaigns performed. The comparison between the experimental and the analytical results are presented and discussed
Discontinuous Transition in a Boundary Driven Contact Process
The contact process is a stochastic process which exhibits a continuous,
absorbing-state phase transition in the Directed Percolation (DP) universality
class. In this work, we consider a contact process with a bias in conjunction
with an active wall. This model exhibits waves of activity emanating from the
active wall and, when the system is supercritical, propagating indefinitely as
travelling (Fisher) waves. In the subcritical phase the activity is localised
near the wall. We study the phase transition numerically and show that certain
properties of the system, notably the wave velocity, are discontinuous across
the transition. Using a modified Fisher equation to model the system we
elucidate the mechanism by which the the discontinuity arises. Furthermore we
establish relations between properties of the travelling wave and DP critical
exponents.Comment: 14 pages, 9 figure
Chinese–Spanish neural machine translation enhanced with character and word bitmap fonts
Recently, machine translation systems based on neural networks have reached state-of-the-art results for some pairs of languages (e.g., German–English). In this paper, we are investigating the performance of neural machine translation in Chinese–Spanish, which is a challenging language pair. Given that the meaning of a Chinese word can be related to its graphical representation, this work aims to enhance neural machine translation by using as input a combination of: words or characters and their corresponding bitmap fonts. The fact of performing the interpretation of every word or character as a bitmap font generates more informed vectorial representations. Best results are obtained when using words plus their bitmap fonts obtaining an improvement (over a competitive neural MT baseline system) of almost six BLEU, five METEOR points and ranked coherently better in the human evaluation.Peer ReviewedPostprint (published version
- …