547 research outputs found

    A linear construction for certain Kerdock and Preparata codes

    Full text link
    The Nordstrom-Robinson, Kerdock, and (slightly modified) Pre\- parata codes are shown to be linear over \ZZ_4, the integers  mod  4\bmod~4. The Kerdock and Preparata codes are duals over \ZZ_4, and the Nordstrom-Robinson code is self-dual. All these codes are just extended cyclic codes over \ZZ_4. This provides a simple definition for these codes and explains why their Hamming weight distributions are dual to each other. First- and second-order Reed-Muller codes are also linear codes over \ZZ_4, but Hamming codes in general are not, nor is the Golay code.Comment: 5 page

    Embedded Rank Distance Codes for ISI channels

    Get PDF
    Designs for transmit alphabet constrained space-time codes naturally lead to questions about the design of rank distance codes. Recently, diversity embedded multi-level space-time codes for flat fading channels have been designed from sets of binary matrices with rank distance guarantees over the binary field by mapping them onto QAM and PSK constellations. In this paper we demonstrate that diversity embedded space-time codes for fading Inter-Symbol Interference (ISI) channels can be designed with provable rank distance guarantees. As a corollary we obtain an asymptotic characterization of the fixed transmit alphabet rate-diversity trade-off for multiple antenna fading ISI channels. The key idea is to construct and analyze properties of binary matrices with a particular structure induced by ISI channels.Comment: Submitted to IEEE Transactions on Information Theor

    List decoding of noisy Reed-Muller-like codes

    Full text link
    First- and second-order Reed-Muller (RM(1) and RM(2), respectively) codes are two fundamental error-correcting codes which arise in communication as well as in probabilistically-checkable proofs and learning. In this paper, we take the first steps toward extending the quick randomized decoding tools of RM(1) into the realm of quadratic binary and, equivalently, Z_4 codes. Our main algorithmic result is an extension of the RM(1) techniques from Goldreich-Levin and Kushilevitz-Mansour algorithms to the Hankel code, a code between RM(1) and RM(2). That is, given signal s of length N, we find a list that is a superset of all Hankel codewords phi with dot product to s at least (1/sqrt(k)) times the norm of s, in time polynomial in k and log(N). We also give a new and simple formulation of a known Kerdock code as a subcode of the Hankel code. As a corollary, we can list-decode Kerdock, too. Also, we get a quick algorithm for finding a sparse Kerdock approximation. That is, for k small compared with 1/sqrt{N} and for epsilon > 0, we find, in time polynomial in (k log(N)/epsilon), a k-Kerdock-term approximation s~ to s with Euclidean error at most the factor (1+epsilon+O(k^2/sqrt{N})) times that of the best such approximation

    Quantum Reed-Solomon Codes

    Get PDF
    After a brief introduction to both quantum computation and quantum error correction, we show how to construct quantum error-correcting codes based on classical BCH codes. With these codes, decoding can exploit additional information about the position of errors. This error model - the quantum erasure channel - is discussed. Finally, parameters of quantum BCH codes are provided.Comment: Summary only (2 pages), for the full version see: Proceedings Applied Algebra, Algebraic Algorithms and Error-Correcting Codes (AAECC-13), Lecture Notes in Computer Science 1719, Springer, 199

    A Theory of Fault-Tolerant Quantum Computation

    Full text link
    In order to use quantum error-correcting codes to actually improve the performance of a quantum computer, it is necessary to be able to perform operations fault-tolerantly on encoded states. I present a general theory of fault-tolerant operations based on symmetries of the code stabilizer. This allows a straightforward determination of which operations can be performed fault-tolerantly on a given code. I demonstrate that fault-tolerant universal computation is possible for any stabilizer code. I discuss a number of examples in more detail, including the five-qubit code.Comment: 30 pages, REVTeX, universal swapping operation added to allow universal computation on any stabilizer cod

    Nonintersecting Subspaces Based on Finite Alphabets

    Full text link
    Two subspaces of a vector space are here called ``nonintersecting'' if they meet only in the zero vector. The following problem arises in the design of noncoherent multiple-antenna communications systems. How many pairwise nonintersecting M_t-dimensional subspaces of an m-dimensional vector space V over a field F can be found, if the generator matrices for the subspaces may contain only symbols from a given finite alphabet A subseteq F? The most important case is when F is the field of complex numbers C; then M_t is the number of antennas. If A = F = GF(q) it is shown that the number of nonintersecting subspaces is at most (q^m-1)/(q^{M_t}-1), and that this bound can be attained if and only if m is divisible by M_t. Furthermore these subspaces remain nonintersecting when ``lifted'' to the complex field. Thus the finite field case is essentially completely solved. In the case when F = C only the case M_t=2 is considered. It is shown that if A is a PSK-configuration, consisting of the 2^r complex roots of unity, the number of nonintersecting planes is at least 2^{r(m-2)} and at most 2^{r(m-1)-1} (the lower bound may in fact be the best that can be achieved).Comment: 14 page

    Quantum Error Correction and Orthogonal Geometry

    Get PDF
    A group theoretic framework is introduced that simplifies the description of known quantum error-correcting codes and greatly facilitates the construction of new examples. Codes are given which map 3 qubits to 8 qubits correcting 1 error, 4 to 10 qubits correcting 1 error, 1 to 13 qubits correcting 2 errors, and 1 to 29 qubits correcting 5 errors.Comment: RevTex, 4 pages, no figures, submitted to Phys. Rev. Letters. We have changed the statement of Theorem 2 to correct it -- we now get worse rates than we previously claimed for our quantum codes. Minor changes have been made to the rest of the pape

    Scalability of Shor's algorithm with a limited set of rotation gates

    Full text link
    Typical circuit implementations of Shor's algorithm involve controlled rotation gates of magnitude π/22L\pi/2^{2L} where LL is the binary length of the integer N to be factored. Such gates cannot be implemented exactly using existing fault-tolerant techniques. Approximating a given controlled π/2d\pi/2^{d} rotation gate to within δ=O(1/2d)\delta=O(1/2^{d}) currently requires both a number of qubits and number of fault-tolerant gates that grows polynomially with dd. In this paper we show that this additional growth in space and time complexity would severely limit the applicability of Shor's algorithm to large integers. Consequently, we study in detail the effect of using only controlled rotation gates with dd less than or equal to some dmaxd_{\rm max}. It is found that integers up to length Lmax=O(4dmax)L_{\rm max} = O(4^{d_{\rm max}}) can be factored without significant performance penalty implying that the cumbersome techniques of fault-tolerant computation only need to be used to create controlled rotation gates of magnitude π/64\pi/64 if integers thousands of bits long are desired factored. Explicit fault-tolerant constructions of such gates are also discussed.Comment: Substantially revised version, twice as long as original. Two tables converted into one 8-part figure, new section added on the construction of arbitrary single-qubit rotations using only the fault-tolerant gate set. Substantial additional discussion and explanatory figures added throughout. (8 pages, 6 figures
    • …
    corecore