46 research outputs found
Evidence-Based Medicine in Daily Surgical Decision Making: A Survey-Based Comparison between the UK and Germany
Background: Evidence-based medicine (EbM) is a vital part of reasonable and conclusive decision making for clinicians in daily clinical work. To analyze the knowledge and the attitude of surgeons towards EbM, a survey was performed in the UK and Germany. Methods: A web-based questionnaire was distributed via mailing lists from the Royal College of Surgeons of England (RCSE) and the Berufsverband Deutscher Chirurgen (BDC). Our primary aim was to get information about knowledge of EbM amongst German and British surgeons. Results: A total of 549 individuals opened the questionnaire, but only 198 questionnaires were complete and valid for analysis. In total, 40,000 recipients were approached via the mailing lists of the BDC and RCSE. The response rate was equally low in both countries. On a scale from 1 (unimportant) to 10 (very important), all participants rated EbM as very important for daily clinical decision making (7.3 ± 1.9) as well as for patients (7.8 ± 1.9) and the national health system (7.8 ± 1.9). On a scale from 1 (unimportant) to 5 (very important), systematic reviews (4.6 ± 0.6) and randomized controlled trials (4.6 ± 0.6) were identified as the highest levels of study designs to enhance evidence in medicine. British surgeons considered EbM to be more important in daily clinical work when compared to data from German surgeons (7.9 ± 1.6 vs. 6.7 ± 2.1, p < 0.001). Subgroup analysis showed different results in some categories; however, a pattern to explain the differences was not evident. Personal requirements expressed in a free text field emphasized the results and reflected concerns such as broad unwillingness and lack of interdisciplinary approaches for patients (n = 59: 25 in the UK and 34 in Germany). Conclusion: The overall results show that EbM is believed to be important by surgeons in the UK and Germany. However, perception of EbM in the respective health system (UK vs. Germany) may be different. Nonetheless, EbM is an important tool to navigate through daily clinical problems although a discrepancy between the knowledge of theoretical abstract terms and difficulties in implementing EbM in daily clinical work has been detected. The provision of infrastructure, courses and structured education as a permanent instrument will advance the knowledge, application and improvement of EbM in the future
HCC recurrence in HCV-infected patients after liver transplantation: SiLVER Study reveals benefits of sirolimus in combination with CNIs - a post-hoc analysis
Factors affecting outcomes in liver transplant (LTx) recipients with hepatocellular carcinoma (HCC) and hepatitis C viral (HCV) infection include the choice of immunosuppression. Here, we analyzed the HCV+ subgroup of patients from the randomized controlled, international SiLVER Study. We performed a post hoc analysis of 166 HCV+ SiLVER Study patients regarding HCC outcome after LTx. Control patients (group A: n = 88) received mTOR inhibitor (mTORi)-free, calcineurin inhibitor (CNI)-based versus sirolimus-based immunosuppression (group B: n = 78). We found no significant difference regarding HCV-RNA titers between group A and B. Since no effect in group B could be due to variable sirolimus dosing, we split group B into patients receiving sirolimus-based immunosuppression + CNIs for >50% (B1; n = 44) or <50% (B2; n = 34) of the time. While there remained no difference in HCV-RNA titer between groups, HCC recurrence-free survival in group B1 (81.8%) was markedly better versus both group A (62.7%; P = 0.0136) and group B2 (64.7%; P = 0.0326); Interestingly, further subgroup analysis revealed an increase (P = 0.0012) in liver enzyme values in group B2. Taken together, in HCV-infected patients with HCC and LTx, mTORi immunosuppression + CNIs yields excellent outcomes. Unexpectedly, higher levels of liver inflammation and poorer outcomes occur with mTORi monotherapy in the HCV+ subgroup
Molecular Mechanism of the Constitutive Activation of the L250Q Human Melanocortin-4 Receptor Polymorphism â€
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/65471/1/j.1747-0285.2006.00362.x.pd
FSP1 is a glutathione-independent ferroptosis suppressor
Ferroptosis is an iron-dependent form of necrotic cell death marked by oxidative damage to phospholipids1,2. To date, ferroptosis has been believed to be controlled only by the phospholipid hydroperoxide-reducing enzyme glutathione peroxidase 4 (GPX4)3,4 and radical-trapping antioxidants5,6. However, elucidation of the factors that underlie the sensitivity of a given cell type to ferroptosis7 is critical to understand the pathophysiological role of ferroptosis and how it may be exploited for the treatment of cancer. Although metabolic constraints8 and phospholipid composition9,10 contribute to ferroptosis sensitivity, no cell-autonomous mechanisms have been identified that account for the resistance of cells to ferroptosis. Here we used an expression cloning approach to identify genes in human cancer cells that are able to complement the loss of GPX4. We found that the flavoprotein apoptosis-inducing factor mitochondria-associated 2 (AIFM2) is a previously unrecognized anti-ferroptotic gene. AIFM2, which we renamed ferroptosis suppressor protein 1 (FSP1) and which was initially described as a pro-apoptotic gene11, confers protection against ferroptosis elicited by GPX4 deletion. We further demonstrate that the suppression of ferroptosis by FSP1 is mediated by ubiquinone (also known as coenzyme Q10 (CoQ10)): the reduced form, ubiquinol, traps lipid peroxyl radicals that mediate lipid peroxidation, whereas FSP1 catalyses the regeneration of CoQ10 using NAD(P)H. Pharmacological targeting of FSP1 strongly synergizes with GPX4 inhibitors to trigger ferroptosis in a number of cancer entities. In conclusion, the FSP1–CoQ10–NAD(P)H pathway exists as a stand-alone parallel system, which co-operates with GPX4 and glutathione to suppress phospholipid peroxidation and ferroptosis
Sirolimus Use in Liver Transplant Recipients With Hepatocellular Carcinoma : A Randomized, Multicenter, Open-Label Phase 3 Trial
Background We investigated whether sirolimus-based immunosuppression improves outcomes in liver transplantation (LTx) candidates with hepatocellular carcinoma (HCC). Methods In a prospective-randomized open-label international trial, 525 LTx recipients with HCC initially receiving mammalian target of rapamycin inhibitor-free immunosuppression were randomized 4 to 6 weeks after transplantation into a group on mammalian target of rapamycin inhibitor-free immunosuppression (group A: 264 patients) or a group incorporating sirolimus (group B: 261). The primary endpoint was recurrence-free survival (RFS); intention-to-treat (ITT) analysis was conducted after 8 years. Overall survival (OS) was a secondary endpoint. Results Recurrence-free survival was 64.5% in group A and 70.2% in group B at study end, this difference was not significant (P = 0.28; hazard ratio [HR], 0.84; 95% confidence interval [95% CI], 0.62; 1.15). In a planned analysis of RFS rates at yearly intervals, group B showed better outcomes 3 years after transplantation (HR, 0.7; 95% CI, 0.48-1.00). Similarly, OS (P = 0.21; HR, 0.81; 95% CI, 0.58-1.13) was not statistically better in group B at study end, but yearly analyses showed improvement out to 5 years (HR, 0.7; 95% CI, 0.49-1.00). Interestingly, subgroup (Milan Criteria-based) analyses revealed that low-risk, rather than high-risk, patients benefited most from sirolimus; furthermore, younger recipients (age 60) also benefited, as well sirolimus monotherapy patients. Serious adverse event numbers were alike in groups A (860) and B (874). Conclusions Sirolimus in LTx recipients with HCC does not improve long-term RFS beyond 5 years. However, a RFS and OS benefit is evident in the first 3 to 5 years, especially in low-risk patients. This trial provides the first high-level evidence base for selecting immunosuppression in LTx recipients with HCC.Peer reviewe
NFE2L1-mediated proteasome function protects from ferroptosis.
OBJECTIVE: Ferroptosis continues to emerge as a novel modality of cell death with important therapeutic implications for a variety of diseases, most notably cancer and degenerative diseases. While susceptibility, initiation, and execution of ferroptosis have been linked to reprogramming of cellular lipid metabolism, imbalances in iron-redox homeostasis, and aberrant mitochondrial respiration, the detailed mechanisms of ferroptosis are still insufficiently well understood. METHODS AND RESULTS: Here we show that diminished proteasome function is a new mechanistic feature of ferroptosis. The transcription factor nuclear factor erythroid-2, like-1 (NFE2L1) protects from ferroptosis by sustaining proteasomal activity. In cellular systems, loss of NFE2L1 reduced cellular viability after the induction of both chemically and genetically induced ferroptosis, which was linked to the regulation of proteasomal activity under these conditions. Importantly, this was reproduced in a Sedaghatian-type Spondylometaphyseal Dysplasia (SSMD) patient-derived cell line carrying mutated glutathione peroxidase-4 (GPX4), a critical regulator of ferroptosis. Also, reduced proteasomal activity was associated with ferroptosis in Gpx4-deficient mice. In a mouse model for genetic Nfe2l1 deficiency, we observed brown adipose tissue (BAT) involution, hyperubiquitination of ferroptosis regulators, including the GPX4 pathway, and other hallmarks of ferroptosis. CONCLUSION: Our data highlight the relevance of the NFE2L1-proteasome pathway in ferroptosis. Manipulation of NFE2L1 activity might enhance ferroptosis-inducing cancer therapies as well as protect from aberrant ferroptosis in neurodegeneration, general metabolism, and beyond