4 research outputs found

    Transfer Matrices and Partition-Function Zeros for Antiferromagnetic Potts Models. V. Further Results for the Square-Lattice Chromatic Polynomial

    Get PDF
    We derive some new structural results for the transfer matrix of square-lattice Potts models with free and cylindrical boundary conditions. In particular, we obtain explicit closed-form expressions for the dominant (at large |q|) diagonal entry in the transfer matrix, for arbitrary widths m, as the solution of a special one-dimensional polymer model. We also obtain the large-q expansion of the bulk and surface (resp. corner) free energies for the zero-temperature antiferromagnet (= chromatic polynomial) through order q^{-47} (resp. q^{-46}). Finally, we compute chromatic roots for strips of widths 9 <= m <= 12 with free boundary conditions and locate roughly the limiting curves.Comment: 111 pages (LaTeX2e). Includes tex file, three sty files, and 19 Postscript figures. Also included are Mathematica files data_CYL.m and data_FREE.m. Many changes from version 1: new material on series expansions and their analysis, and several proofs of previously conjectured results. Final version to be published in J. Stat. Phy

    Transfer matrices and partition-function zeros for antiferromagnetic Potts models. VI. Square lattice with special boundary conditions

    Get PDF
    We study, using transfer-matrix methods, the partition-function zeros of the square-lattice q-state Potts antiferromagnet at zero temperature (= square-lattice chromatic polynomial) for the special boundary conditions that are obtained from an m x n grid with free boundary conditions by adjoining one new vertex adjacent to all the sites in the leftmost column and a second new vertex adjacent to all the sites in the rightmost column. We provide numerical evidence that the partition-function zeros are becoming dense everywhere in the complex q-plane outside the limiting curve B_\infty(sq) for this model with ordinary (e.g. free or cylindrical) boundary conditions. Despite this, the infinite-volume free energy is perfectly analytic in this region.Comment: 114 pages (LaTeX2e). Includes tex file, three sty files, and 23 Postscript figures. Also included are Mathematica files data_Eq.m, data_Neq.m,and data_Diff.m. Many changes from version 1, including several proofs of previously conjectured results. Final version to be published in J. Stat. Phy
    corecore