6 research outputs found
Observation of the Dynamical Casimir Effect in a Superconducting Circuit
One of the most surprising predictions of modern quantum theory is that the
vacuum of space is not empty. In fact, quantum theory predicts that it teems
with virtual particles flitting in and out of existence. While initially a
curiosity, it was quickly realized that these vacuum fluctuations had
measurable consequences, for instance producing the Lamb shift of atomic
spectra and modifying the magnetic moment for the electron. This type of
renormalization due to vacuum fluctuations is now central to our understanding
of nature. However, these effects provide indirect evidence for the existence
of vacuum fluctuations. From early on, it was discussed if it might instead be
possible to more directly observe the virtual particles that compose the
quantum vacuum. 40 years ago, Moore suggested that a mirror undergoing
relativistic motion could convert virtual photons into directly observable real
photons. This effect was later named the dynamical Casimir effect (DCE). Using
a superconducting circuit, we have observed the DCE for the first time. The
circuit consists of a coplanar transmission line with an electrical length that
can be changed at a few percent of the speed of light. The length is changed by
modulating the inductance of a superconducting quantum interference device
(SQUID) at high frequencies (~11 GHz). In addition to observing the creation of
real photons, we observe two-mode squeezing of the emitted radiation, which is
a signature of the quantum character of the generation process.Comment: 12 pages, 3 figure
Probing the quantum vacuum with an artificial atom in front of a mirror
Quantum fluctuations of the vacuum are both a surprising and fundamental
phenomenon of nature. Understood as virtual photons flitting in and out of
existence, they still have a very real impact, \emph{e.g.}, in the Casimir
effects and the lifetimes of atoms. Engineering vacuum fluctuations is
therefore becoming increasingly important to emerging technologies. Here, we
shape vacuum fluctuations using a "mirror", creating regions in space where
they are suppressed. As we then effectively move an artificial atom in and out
of these regions, measuring the atomic lifetime tells us the strength of the
fluctuations. The weakest fluctuation strength we observe is 0.02 quanta, a
factor of 50 below what would be expected without the mirror, demonstrating
that we can hide the atom from the vacuum
Validity of resonant two-qubit gates in the ultrastrong coupling regime of circuit QED
We investigate theoretically the performance of two-qubit resonant gates in
the crossover from the strong to the ultrastrong coupling (USC) regime of
light-matter interaction in circuit QED. Two controlled-PHASE gate
schemes---that works well within the rotating wave-approximation (RWA)---are
analyzed while taking into account the effects of counter-rotating terms
appearing in the Hamiltonian. Our numerical results show that the fidelity of
the gate operation is above 96 % when the ratio between the coupling strength
and the resonator frequency, g/\omega_r, is of about 10 %. Novel schemes are
required in order to implement ultrafast quantum gates when increasing the
ratio g/\omega_r.Comment: 8 pages, 4 figures. Accepted for publication in Physica Scripta,
special issue in relation with the 18th Central European Workshop on Quantum
Optic