1,479 research outputs found

    Electron conduction along quantizing magnetic fields in neutron star crusts. I. Theory

    Full text link
    Transport properties of degenerate relativistic electrons along quantizing magnetic fields in neutron star crusts are considered. A kinetic equation is derived for the spin polarization density matrix of electrons. Its solution does not depend on the choice of basic electron wave functions unlike previous solutions of the traditional kinetic equation for the distribution function. The density matrix formalism shows that one can always reach high accuracy with the traditional method by a proper choice of the basic functions. Electron Coulomb scattering on ions is considered in liquid matter, and on high-temperature phonons or on charged impurities in solid matter. In the solid regime, the Debye -- Waller reduction of phonon scattering can strongly enhance the longitudinal thermal or electric conductivity. An efficient numerical method is proposed for calculating the transport properties of electron gas at any magnetic field of practical interest.Comment: 12 pages, A&A-LaTeX (l-aa.sty included), 2 PostScript figures. A misprint in Eq. (B3) correcte

    Atmospheres and radiating surfaces of neutron stars

    Full text link
    The early 21st century witnesses a dramatic rise in the study of thermal radiation of neutron stars. Modern space telescopes have provided a wealth of valuable information which, when properly interpreted, can elucidate the physics of superdense matter in the interior of these stars. This interpretation is necessarily based on the theory of formation of neutron star thermal spectra, which, in turn, is based on plasma physics and on the understanding of radiative processes in stellar photospheres. In this paper, the current status of the theory is reviewed with particular emphasis on neutron stars with strong magnetic fields. In addition to the conventional deep (semi-infinite) atmospheres, radiative condensed surfaces of neutron stars and "thin" (finite) atmospheres are considered.Comment: 43 pages, 13 figures, 1 table. In v.3, there are more than 50 minor corrections (typos, wording, style) and one important typo fix (the sign in Eq.(61)). In v.4, beside a few minor improvements, ionization equilibrium equation (58) is corrected. In v.5, a typo in Eq.(12) is fixe

    Hydrogen atom in a magnetic field: The quadrupole moment

    Full text link
    The quadrupole moment of a hydrogen atom in a magnetic field for field strengths from 0 to 4.414e13 G is calculated by two different methods. The first method is variational, and based on a single trial function. The second method deals with a solution of the Schroedinger equation in the form of a linear combination of Landau orbitals.Comment: 4 pages, 1 figure, 1 table; RevTeX. Final (proofs-stage) version of the text; corrected numbers in Table 1 and in Eq.(15

    On the Stabilizing Action of Protein Denaturants: Acetonitrile Effect on Stability of Lysozyme in Aqueous Solutions

    Get PDF
    Stability of hen lysozyme in the presence of acetonitrile (MeCN) at different pH values of the medium was studied by scanning microcalorimetry with a special emphasis on determination of reliable values of the denaturational heat capacity change. It was found that the temperature of denaturation decreases on addition of MeCN. However, the free energy extrapolation showed that below room temperature the thermodynamic stability increases at low concentrations of MeCN in spite of the general destabilizing effect at higher concentrations and temperatures. Charge-induced contribution to this stabilization was shown to be negligible (no pH-dependence was found); therefore, the most probable cause for the phenomenon is an increase of hydrophobic interactions at low temperatures in aqueous solutions containing small amounts of the organic additive. The difference in preferential solvation of native and denatured states of lysozyme was calculated from the stabilization free energy data. It was found that the change in preferential solvation strongly depends on the temperature in the water-rich region. At the higher MeCN content this dependence decreases until, at 0.06 mole fractions of MeCN, the difference in the preferential solvation between native and denatured lysozyme becomes independent of the temperature over a range of 60 K. The importance of taking into account non-ideality of a mixed solution, when analyzing preferential solvation phenomena was emphasized

    Folding Under Inequilibrium Conditions as a Possible Reason for Partial Irreversibility of Heat-Denatured Proteins: Computer Simulation Study

    Get PDF
    Using computer simulations we have studied possible effects of heating and cooling at different scan rates on unfolding and refolding of macromolecules. We have shown that even the simplest two-state reversible transition can behave irreversibly when an unfavorable combination of cooling rate, relaxation time and activation energy of refolding occurs. On the basis of this finding we suppose that apparent irreversibility of some proteins denatured by heat may result from slow relaxation on cooling rather than thermodynamic instability and/or irreversible alterations of the polypeptide chain. Using this kinetic reversible two-state model, we estimated the effects of the scan rate and kinetic parameters of the macromolecule on its unfolding–refolding process. A few recommendations are suggested on how to reach maximal possible recovery after denaturation if refolding appears to be under kinetic control
    • …
    corecore