1,435 research outputs found

    Phase space polarization and the topological string: a case study

    Get PDF
    We review and elaborate on our discussion in hep-th/0606112 on the interplay between the target space and the worldsheet description of the open topological string partition function, for the example of the conifold. We discuss the appropriate phase space and canonical form for the system. We find a map between choices of polarization and the worldsheet description, based on which we study the behavior of the partition function under canonical transformations.Comment: 18 pages, invited review for MPL

    Sequential joint signal detection and signal-to-noise ratio estimation

    Full text link
    The sequential analysis of the problem of joint signal detection and signal-to-noise ratio (SNR) estimation for a linear Gaussian observation model is considered. The problem is posed as an optimization setup where the goal is to minimize the number of samples required to achieve the desired (i) type I and type II error probabilities and (ii) mean squared error performance. This optimization problem is reduced to a more tractable formulation by transforming the observed signal and noise sequences to a single sequence of Bernoulli random variables; joint detection and estimation is then performed on the Bernoulli sequence. This transformation renders the problem easily solvable, and results in a computationally simpler sufficient statistic compared to the one based on the (untransformed) observation sequences. Experimental results demonstrate the advantages of the proposed method, making it feasible for applications having strict constraints on data storage and computation.Comment: 5 pages, Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), 201

    Relaying Simultaneous Multicast Messages

    Full text link
    The problem of multicasting multiple messages with the help of a relay, which may also have an independent message of its own to multicast, is considered. As a first step to address this general model, referred to as the compound multiple access channel with a relay (cMACr), the capacity region of the multiple access channel with a "cognitive" relay is characterized, including the cases of partial and rate-limited cognition. Achievable rate regions for the cMACr model are then presented based on decode-and-forward (DF) and compress-and-forward (CF) relaying strategies. Moreover, an outer bound is derived for the special case in which each transmitter has a direct link to one of the receivers while the connection to the other receiver is enabled only through the relay terminal. Numerical results for the Gaussian channel are also provided.Comment: This paper was presented at the IEEE Information Theory Workshop, Volos, Greece, June 200

    Measurement Matrix Design for Compressive Sensing Based MIMO Radar

    Full text link
    In colocated multiple-input multiple-output (MIMO) radar using compressive sensing (CS), a receive node compresses its received signal via a linear transformation, referred to as measurement matrix. The samples are subsequently forwarded to a fusion center, where an L1-optimization problem is formulated and solved for target information. CS-based MIMO radar exploits the target sparsity in the angle-Doppler-range space and thus achieves the high localization performance of traditional MIMO radar but with many fewer measurements. The measurement matrix is vital for CS recovery performance. This paper considers the design of measurement matrices that achieve an optimality criterion that depends on the coherence of the sensing matrix (CSM) and/or signal-to-interference ratio (SIR). The first approach minimizes a performance penalty that is a linear combination of CSM and the inverse SIR. The second one imposes a structure on the measurement matrix and determines the parameters involved so that the SIR is enhanced. Depending on the transmit waveforms, the second approach can significantly improve SIR, while maintaining CSM comparable to that of the Gaussian random measurement matrix (GRMM). Simulations indicate that the proposed measurement matrices can improve detection accuracy as compared to a GRMM
    corecore