11 research outputs found

    Preparation and properties of multi-branched poly(D-lactide) derived from polyglycidol and its stereocomplex blends

    No full text
    Multi-branched poly(D-lactide)s (mbPDLAs) with various structures are synthesized via ring-opening polymerization by using polyglycidol (PG) macro-initiators. Their chemical structures and thermal properties are controlled by adjusting feed ratios of D-lactide (DLA) and PG. The materials are blended with commercial linear poly(L-lactide)(l-PLLA) to form a stereocomplex structure. Effects of mbPDLAs structures and l-PLLA/mbPDLA ratios on the blends’ thermal, mechanical, and rheological properties are evaluated. Mechanical properties of the stereocomplex blends, especially elongation at break and toughness, are dependent on the blend compositions, in which a 90:10 ratio exhibits the most desirable properties. The material also exhibits the lowest complex viscosity, which provides easy processing conditions. This is achieved by the incorporation of copolymers with multi-branched structures and an ability to form a much stronger stereocomplex structure

    Development of Multifunctional Film for Greenhouse Applications in Tropical Regions

    No full text
    Single-purpose greenhouse films such as UV-blocking, NIR-blocking, or ultrathermic films are commonly developed in various climate regions. However, multifunctional films of combined functions are rarely explored, especially in the tropical regions. In this research, a multifunctional film having high UV filtration, high NIR reflection, and good light diffusion was developed for a greenhouse cover application in tropical regions. Effects of type, quantity, and particle size of additives on optical properties (280–2500 nm) and mechanical properties of 3-layer laminated films comprising 90% LLDPE/10% EVA polymer matrix and additives were studied. Results show that properties of those films are adjustable by varying types, particle size, and content of additives. The UV transmission of the film was ranged from 13.7 to 32.7 %T, NIR reflection from 12.1 to 19.8 %R, and %haze diffusion from 39.5 to 72.3 where photosynthetically active radiation (PAR) transmission was in the range of 62.6–78.9 %T. Those films exhibit tensile strength of 18–24 MPa, modulus of elasticity of 200–280 MPa, and elongation at break of 610–810%. A field test of the newly developed films as a cover for a greenhouse of 6 m wide ×24 m long ×4.3 m high with double roof design showed a better quality of plant growth in terms of weight, height, and bush width compared to a 7% UV absorber commercial film
    corecore